On the Design and Implementation of an Efficient DAA Scheme

  • Liqun Chen
  • Dan Page
  • Nigel P. Smart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6035)


Direct Anonymous Attestation (DAA) is an anonymous digital signature scheme that aims to provide both signer authentication and privacy. One of the properties that makes DAA an attractive choice in practice is the split signer role. In short, a principal signer (a Trusted Platform Module (TPM)) signs messages in collaboration with an assistant signer (the Host, a standard computing platform into which the TPM is embedded). This split aims to harness the high level of security offered by the TPM, and augment it using the high level of computational and storage ability offered by the Host. Our contribution in this paper is a modification to an existing pairing-based DAA scheme that significantly improves efficiency, and a comparison with the original RSA-based DAA scheme via a concrete implementation.


Hash Function Signature Scheme Trusted Platform Module Digital Right Management Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avanzi, R.M.: The complexity of certain multi-exponentiation techniques in cryptography. Journal of Cryptology 18, 357–373 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Sort signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Computer and Communications Security – CCS 2004, pp. 132–145. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation in context. In: Mitchell, C. (ed.) Trusted Computing, ch. 5, pp. 143–174. IEEE, London (2005)Google Scholar
  7. 7.
    Brickell, E., Chen, L., Li, J.: Simplified security notions for direct anonymous attestation and a concrete scheme from pairings. Int. Journal of Information Security 8, 315–330 (2009)CrossRefGoogle Scholar
  8. 8.
    Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme with enhanced revocation capabilities. In: Privacy in the Electronic Society – WPES 2007, pp. 21–30. ACM Press, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing. Cryptology ePrint Archive. Report 2009/095,
  11. 11.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Int. Conference on Information Security and Cryptology - Inscrypt 2009 (2009) (to appear)Google Scholar
  14. 14.
    Chen, L., Li, J.: A note on the Chen-Morrissey-Smart direct anonymous attestation scheme (preprint)Google Scholar
  15. 15.
    Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Morrissey, P., Smart, N.P.: On proofs of security of DAA schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 156–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols. Cryptology ePrint Archive. Report 2009/198,
  18. 18.
    Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from pairings. Int. Journal of Information Security 6, 213–242 (2007)CrossRefGoogle Scholar
  19. 19.
    Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. Journal of Computers 3, 43–50 (2008)MathSciNetGoogle Scholar
  20. 20.
    Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint Archive. Report 2006/172,
  22. 22.
    Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)CrossRefMathSciNetGoogle Scholar
  23. 23.
    ISO/IEC 11889: 2009 Information technology – Security techniques – Trusted Platform Module (2009)Google Scholar
  24. 24.
    Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Trusted Computing Group. TCG TPM specification 1.2 (2003),
  27. 27.
    Strasser, M., Stamer, H.: A software-based trusted platform module emulator. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Liqun Chen
    • 1
  • Dan Page
    • 2
  • Nigel P. Smart
    • 2
  1. 1.Hewlett-Packard LaboratoriesBristolUnited Kingdom
  2. 2.Computer Science DepartmentUniversity of BristolBristolUnited Kingdom

Personalised recommendations