An Integrated Study of Proterozoic Dykes, Dharwar Craton, Southern India

  • E. J. Piispa
  • A. V. Smirnov
  • L. J. Pesonen
  • M. Lingadevaru
  • K. S. Anantha Murthy
  • T. C. Devaraju
Chapter

Abstract

The integration of paleomagnetic data with geochronological and geochemical analyses of mafic dyke swarms is a powerful tool for correlating the swarms on regional and global scales. The multidisciplinary approach may also provide important insights into various problems of Earth evolution. We present new results of our paleomagnetic and geochemical investigations of several Proterozoic dykes from the Dharwar craton (Southern India). When combined with the available geochronological data, our data support the presence of at least two different E-W trending dyke swarms (~2,370 and ~1,890 Ma) in the Dharwar craton. Our results are also consistent with the possibility that the Bastar and Dharwar cratons were amalgamated before ~2,370 Ma.

Keywords

Mafic dykes Paleomagnetism Geochemistry Geochronology Dharwar craton India 

References

  1. Bleeker W (2004) Taking the pulse of the Planet Earth: A proposal for a new multi-disciplinary flagship project in Canadian Solid Earth Sciences. Geosci Can 31: 179–190Google Scholar
  2. Bleeker W (2010) The use of hand-held magnetic susceptibility meters in the field: an invaluable tool in regional studies of dyke swarms. In: Srivastava RK and Chalapathi Rao NV (eds) 6th International Dyke Conference – Abstracts, AS Prints and Stationers, Varanasi, India: p. 15Google Scholar
  3. Buchan KL, Goutier J, Hamilton MA, Ernst RE, Matthews WA (2007) Paleomagnetism, U-Pb geochronology and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior province. Can J Earth Sci 44: 1–23CrossRefGoogle Scholar
  4. Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of late Archean oblique convergence. Precamb Res 99: 91–111CrossRefGoogle Scholar
  5. Chatterjee N, Bhattacharji S (2001) Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of South India. Proc Indian Acad Sci Earth Planet Sci 110(4): 433–453Google Scholar
  6. Dawson EM, Hargraves RB (1994) Paleomagnetism of Precambrian swarms in the Harohalli area, South of Bangalore, India. Precamb Res 69: 157–167CrossRefGoogle Scholar
  7. Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: Grain size and composition dependence. Phys Earth Planet Int 13: 260–267CrossRefGoogle Scholar
  8. Devaraju TC, Alapieti TT, Sudhakara TL, Kaukonen RJ (2008) Mafic Dyke Swarms of Volcanic Arc, Ocean Floor and N-MOR Basalt Affinity with Destructive Plate Margin Emplacement Features in the Northern Segment of Western Dharwar Craton. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt Ltd, New Delhi: 215–237Google Scholar
  9. Dunlop DJ (2002) Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res doi:10.1029/2001JB000486Google Scholar
  10. Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney J and Coffin M (eds) Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism, AGU Geophys Monogr Ser 100: 297–333CrossRefGoogle Scholar
  11. Ernst RE, Srivastava RK (2008) India’s place in the Proterozoic world: Constraints from the Large Igneous Province (LIP) record. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt Ltd, New Delhi: 41–56Google Scholar
  12. Fisher RA (1953) Dispersion on a sphere. Proc R Soc A 217: 295–305CrossRefGoogle Scholar
  13. French JE (2007) U-Pb dating of Paleoproterozoic mafic dyke swarms of the south Indian Shield: Implications for paleocontinental reconstructions and identifying ancient mantle plume events. PhD Thesis, University of Alberta, Edmonton, AlbertaGoogle Scholar
  14. French JE, Heaman LM, Chacko T, Rivard B (2004) Global mafic magmatism and continental break-up at 2.2 Ga: evidence from the Dharwar Craton, India. Geol Soc Am 36: 340 (Abstracts with programs)Google Scholar
  15. French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: A newly recognised large igneous province. Precamb Res 160: 308–322CrossRefGoogle Scholar
  16. Friend CRL, Nutman AP (1991) SHRIMP U–Pb geochronology of the Closepet granite and Peninsula gneisses, Karnataka, South India. J Geol Soc India 32: 357–368Google Scholar
  17. Halls HC (2008) The Importance of Integrating paleomagnetic Studies of Proterozoic Dykes with U-Pb Geochronology and Geochemistry. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt Ltd, New Delhi: 1–22Google Scholar
  18. Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: Feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precamb Res 155: 47–68CrossRefGoogle Scholar
  19. Heaman LM (2008) Precambrian large igneous provinces: An overview of geochronology,origin and impact on earth evolution. J Geol Soc India 72: 15–34Google Scholar
  20. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8: 523–548CrossRefGoogle Scholar
  21. Jayananda M, Manesha N, Srivastava RK, Mahabaleswar B, Blais S (2008) Petrology and Geochemistry of Paleoproterozoic High-Magnesian Norite and Dolerite Dyke Swarms from the Halagur-Satnur areas, Eastern Dharwar Craton, Southern India. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt Ltd, New Delhi: 239–261Google Scholar
  22. Kirschvink JL (1980) The least squares line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62: 699–718CrossRefGoogle Scholar
  23. Kumar A, Bhalla MS (1983) Paleomagnetics and igneous activity of the area adjoining the south-western margin of the Cuddapah basin, India. Geophys J R Astron Soc 73: 27–37CrossRefGoogle Scholar
  24. Kumar A, Halls HC, Hamilton MA (2010) Paleomagnetism and U-Pb Geochronology of the Karimnagar Dykes Dharwar Craton, India. In: Srivastava RK and Chalapathi Rao NV (eds) 6th International Dyke Conference – Abstracts, AS Prints and Stationers, Varanasi, India: p. 6Google Scholar
  25. Le Maitre RK (2002) Igneous Rocks; A classification and glossary of terms, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  26. Murthy NGK (1995) Proterozoic mafic dykes in southern peninsular India: A review. In: Devaraju TC (Ed) Mafic Dyke Swarms of Peninsular India, Geol Soc India Mem 33: 81–98Google Scholar
  27. Pandey BK, Gupta JN, Sarma KJ, Sastry CA (1997) Sm-Nd, Pb-Pb and Rb-Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: Implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precamb Res 84: 181–196CrossRefGoogle Scholar
  28. Pradhan VR, Meert JG, Pandit MK, Kamenov G, Gregory LC, Malone SJ (2009) India’s changing place in global Proterozoic reconstructions: A review of geochronologic constraints and paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons. J Geodyn doi:10.1016/j.jog.2009.11.008Google Scholar
  29. Radhakrishna T, Joseph M (1993) Proterozoic paleomagnetism of the south Indian shield and tectonic constraints. Geol Soc India Mem 26: 321–336Google Scholar
  30. Radhakrishna T, Krishnendu NR, Balasubramonian G (2007) Mafic dyke magmatism around the Cuddapah Basin: Age constraints, petrological characteristics and geochemical inference for a possible magma chamber on the southwestern margin of the basin. J Geol Soc India 70: 194–206Google Scholar
  31. Rao VP, Pupper JH (1996) Geochemistry and petrogenesis and tectonic setting of Proterozoic mafic dykes swarms, East Dharwar Craton, India. J Geol Soc India 47: 165–174Google Scholar
  32. Rao JM, Rao GVSP, Patil SK (1990) Geochemical and paleomagnetic studies on the middle Proterozoic Karimnagar mafic dyke swarm. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic Dykes and Emplacement Mechanisms: pp. 373–382Google Scholar
  33. Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104: 91–107CrossRefGoogle Scholar
  34. Srivastava RK (2006) Precambrian mafic dyke swarms from the central Indian Bastar craton: Temporal evolution of the subcontinental mantle. In: Hanski E, Mertanen S, Ramo T and Vuollo J (2006) Dyke Swarms – Time markers of Crustal Evolution, Taylor & Francis Group plc, London: 147–159Google Scholar
  35. Subba Rao YV, Radhakrisha Murthy IV (1985) Paleomagnetism and ages of dolerite dykes in Karimnagar District, Andhra Pradesh, India. Geophys J R Astron Soc 82: 331–337CrossRefGoogle Scholar
  36. Zachariah JK, Hanson GN, Rajamani V (1995) Postcrystallization disturbance in the neodymium and lead isotope systems of metabasalts from the Ramagiri schist belt, southern India. Geochim Cosmochim Acta 59: 3189–3203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • E. J. Piispa
    • 1
  • A. V. Smirnov
    • 1
  • L. J. Pesonen
    • 2
  • M. Lingadevaru
    • 3
  • K. S. Anantha Murthy
    • 3
  • T. C. Devaraju
    • 4
  1. 1.Department of Geological and Mining Engineering and SciencesMichigan Technological UniversityHoughtonUSA
  2. 2.Division of Geophysics and AstronomyUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Applied GeologyKuvempu UniversityShankaraghattaIndia
  4. 4.Department of Studies in GeologyKarnatak UniversityDharwadIndia

Personalised recommendations