Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle

  • Marie Python
  • Masako Yoshikawa
  • Tomoyuki Shibata
  • Shoji Arai


Diopsidites and rodingites are two specific kind of dyke cropping out in the mantle section of the Oman ophiolite. Diopsidites show a diopside monomineralic modal composition, associated in some exceptional cases with anorthite. Typical rodingites mineralogical assemblages include grossular, chlorite, tremolite, zoisite/clinozoisite, epidote, prehnite, diopside, magnetite and other accessory minerals in various proportions. Both are result from the alteration in Ca-rich environment of the mantle or pre-existing gabbroic dykes. In spite of this apparent common origin, significant divergences are observed between these two lithologies and their host, allowing us to think that they are two different kind of rock which have been generated by two different processes: rodingites are the result of the interaction between gabbroic dykes and serpentinisation-issued fluids, while diopsidites formed by genuine Ca-metasomatism of the mantle with an external source of calcium. A precise petrographical study of the diopsidites and rodingites, their characteristics and their interaction with their host show that these two lithologies are related to two different type of alteration in the mantle.

  1. 1.

    The first is a classical phenomenon of serpentinisation, which led to the transformation of a primary harzburgite to an assemblage of serpentine, brucite, and magnetite. Rodingite dykes are present in these serpentinised peridotites. They resulted from the interaction of the fluid responsible of the alteration with any mafic lithology included in the serpentinised zone.

  2. 2.

    The second type of alteration involves a Ca-rich fluid, it leads to abundant crystallisation of tremolite, replacing orthopyroxene and serpentine, and results in a nephrite with preserved porphyroclastic texture.



Diopsidites Rodingites Metasomatism Oman ophiolite 


  1. Bach W, Klein F (2009) The petrology of seafloor rodingites: Insights from geochemical reaction path modelling. Lithos 112(1–2): 103–117. doi: 10.1016/j.lithos.2008.10.022CrossRefGoogle Scholar
  2. Barnes I, O’Neil JR, Trescases JJ (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42(1): 144–145. doi: 10.1016/0016–7037(78)90225–9CrossRefGoogle Scholar
  3. Bell JM, Clarke EdC, Marshall P (1911) The geology of the Dunn mountain subdivision, Nelson: NZ Geol. Surv Bull 12: 78Google Scholar
  4. Benoit M, Ceuleneer G, Polvé M (1999) The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402(6761): 514–518. doi: 10.1038/990073CrossRefGoogle Scholar
  5. Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134(1–3): 199–214. doi: 10.1016/S0009–2541(96)00087–3CrossRefGoogle Scholar
  6. Bilgrami SA, Howie RA (1960) Mineralogy and petrology of a rodingite dike, Hindubagh, Pakistan. Am Mineral 45(7–8): 791–801Google Scholar
  7. Bosch D, Jamais M, Boudier F, Nicolas A, Dautria JM, Agrinier P (2004) Deep and high-temperature hydrothermal circulation in the Oman ophiolite – Petrological and isotopic evidence. J Petrol 45(6): 1181–1208. doi: 10.1093/petrology/egh010CrossRefGoogle Scholar
  8. Capedri S, Garuti G, Rossi A (1978) Rodingites from Pindos. Constraints on the “rodingite” problem. Neues Jb Miner Abh 132(3): 242–263Google Scholar
  9. Ceuleneer G, Monnereau M, Amri I (1996) Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates. Nature 379(6561): 149–153. doi: 10.1038/379149a0CrossRefGoogle Scholar
  10. Ceuleneer G, Nicolas A, Boudier F (1988) Mantle flow patterns at an oceanic spreading centre: The Oman peridotites record. Tectonophysics 151(1–4): 1–26. doi: 10.1016/0040–1951(88)90238–7CrossRefGoogle Scholar
  11. Coleman RG (1977) Ophiolites: Ancient Oceanic Lithosphere? No. 12 in Minerals and rocks. Springer, Berlin. doi: 10.1016/0037–0738(79)90041–1Google Scholar
  12. Coleman RG (1981) Tectonic setting for Ophiolite Obduction in Oman. J Geophys Res 86(B4): 2497–2508. doi: 10.1029/JB086iB04p02497CrossRefGoogle Scholar
  13. Combe JP, Launeau P, Pinet P, Despan D, Harris E, Ceuleneer G, Sotin C (2006) Mapping of an ophiolite complex by high-resolution visible-infrared spectrometry. Geochem Geophys Geosyst. doi: 10.1029/2005GC001214Google Scholar
  14. Coogan LA, Thompson GM, MacLeod CJ (2002) A textural and geochemical investigation of high level gabbros from the Oman ophiolite: Implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63(1–2): 67–82. doi: 10.1016/S0024–4937(02)00114–7CrossRefGoogle Scholar
  15. Dubińska E (1995) Rodingites of the eastern part of the Jordanow-Gogolow serpentine massif, Lower Silesia, Poland. Can Mineral 33(3): 585–608Google Scholar
  16. Dubińska E (1997) Rodingites and amphibolites from the serpentinites surrounding Sowie Góry block (Lower Silesia, Poland): Record of supra-subduction zone magmatism and serpentinization. Neues Jahrb Mineral Abh 171(3): 239–279Google Scholar
  17. El-Shazly AEDK, Al-Belushi M (2004) Petrology and Chemistry of Metasomatic Blocks from Bawshir, Northeastern Oman. In Ernst WG (ed) Serpentine and Serpentinites: Mineralogy, Petrology, Geochemistry, Ecology, Geophysics, and Tectonics, vol 8. Bellwether Publcation, Geological Soceity of America, Columbia, MD: 388–422. doi: 10.2747/0020–6814.46.10.904 International Book Series Google Scholar
  18. Frost R (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central Cascades, Washington. J Petrol 16(2): 272–313. doi: 10.1093/petrology/16.2.237CrossRefGoogle Scholar
  19. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7): 1351–1368. doi: 10.1093/petrology/egm021CrossRefGoogle Scholar
  20. Frost BR, Beard JS, McCaig A, Condliffe E (2009) The Formation of Micro-Rodingites from IODP Hole U1309D: Key to understanding the process of Serpentinization. J Petrol 49(9): 1579–1588. doi: 10.1093/petrology/egn038CrossRefGoogle Scholar
  21. Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contrib Mineral Petrol 49(3): 233–257. doi: 10.1007/BF00376590CrossRefGoogle Scholar
  22. Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 30(10): 899–902. doi: 10.1130/0091–7613(2002)03CrossRefGoogle Scholar
  23. Juteau T, Manac’h G, Moreau O, Lécuyer C, Ramboz C (2000) The high temperature reaction zone of the Oman ophiolite: New field data, microthermometry of fluid inclusions, PIXE analyses and oxygen isotopic ratios. Mar Geophys Res 21(3–4): 351–385. doi: 10.1023/A:1026798811446CrossRefGoogle Scholar
  24. Kawahata H, Nohara M, Ishizuka H, Hasebe S, Chiba H (2001) Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J Geophys Res 106(B6): 11083–11099. doi: 10.1029/2000JB900456CrossRefGoogle Scholar
  25. Kobayashi S, Shoji T (1988) Metasomatic process in the formation of rodingite in Boso Peninsula, Chiba, Japan. J Mineral Petrol Econ Geol 83(12): 514–526CrossRefGoogle Scholar
  26. Li XP, Zhang LF, Wang ZL (2007) Petrology of rodingite derived from eclogite in western Tianshan, China. J Metamorph Geol 25(3): 363–382. doi: 10.1111/j.1525–1314.2007.00700.xCrossRefGoogle Scholar
  27. MacLeod CJ, Yaouancq G (2000) A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges. Earth Planet Sci Lett 176(3–4): 357–373. doi: 10.1016/S0012-821X(00)00020–0CrossRefGoogle Scholar
  28. Manning CE, MacLeod CJ, Weston PE (2000) Lower-crustal cracking front at fast-spreading ridges: Evidence from the East Pacific Rise and the Oman Ophiolite. In Dilek YR, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, Special Publication, vol 349 Geological Society of America, Boulder, CO: 261–272, doi: 10.1130/0–8137–2349–3.261CrossRefGoogle Scholar
  29. Mittwede SK, Schandl ES (1992) Rodingites from the southern Appalachian Piedmont, South Carolina, USA. Euro J Mineral 4(1): 7–16Google Scholar
  30. Monnier C, Girardeau J, Le Mée L, Polvé M (2006) Along-ridge petrological segmentation of the mantle in the Oman ophiolite. Geochem Geophys Geosyst. doi: 10.1029/2006GC001320Google Scholar
  31. Muraoka H (1985) Serpentinization reaction responsible for rodingite formation of the Ashidachi ultramafic complex, Southwest Japan. J Jpn Assoc Mineral Petrol Econ Geol 80(10): 413–428CrossRefGoogle Scholar
  32. Nasir S, Al Sayigh AR, Al Harthy A, Al Khirbash S, Al Jaaidi O, Musllam A, Al Mishwat A, Al Bu’saidi S (2007) Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman. Chem Erde-Geochem 25(3): 213–228. doi: 10.1016/j.chemer.2005.01.003CrossRefGoogle Scholar
  33. Neal CR, Stanger G (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. Mineral Mag 48(347): 237–241CrossRefGoogle Scholar
  34. Nehlig P (1994) Fracture and permeability analysis in magma-hydrothermal transition zones in the Samail Ophiolite (Oman). J Geophys Res 99(B1): 589–601. doi: 10.1029/93JB02569CrossRefGoogle Scholar
  35. Nehlig P, Juteau T, Bendel V, Cotten J (1994) The root zones of oceanic hydrothermal systems: Constraints from the Samail Ophiolite (Oman). J Geophys Res 99(B3): 4703–4713. doi: 10.1029/93JB02663CrossRefGoogle Scholar
  36. Nicolas A, Mainprice D, Boudier F (2003) High-temperature seawater circulation throughout crust of oceanic ridges: A model derived from the Oman ophiolites. J Geophys Res 108(B8): 2371. doi: 10.1029/2002JB002094CrossRefGoogle Scholar
  37. Pearce JA, Alabaster T, Shelton AW, Searle MP (1981) The Oman ophiolite as a cretaceous arc-basin complex: evidence and implications. Philos Trans R Soc A 300 (1454): Extensional Tectonics Associated with Convergent Plate BoundariesGoogle Scholar
  38. Pomonis P, Tsikouras B, Karipi S, Hatzipanagiotou K (2008) Rodingite formation in ultramafic rocks from the Koziakas ophiolite, western Thessaly, Greece: Conditions of metasomatic alteration, geochemical exchanges and T-X(CO) evolutionary path. Can Mineral 46(3): 569–581. doi: 10.3749/canmin.46.3.569CrossRefGoogle Scholar
  39. Python M, Ceuleneer G (2003) Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem Geophys Geosyst. doi: 10.1029/2002GC000354Google Scholar
  40. Python M, Ceuleneer G, Arai S (2008) Chromian spinels in mafic – ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos 106(1–2): 137–154. doi: 10.1016/j.lithos.2008.07.001CrossRefGoogle Scholar
  41. Python M, Ceuleneer G, Ishida Y, Barrat JA, Arai S (2007) Oman diopsidites: A new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet Sci Lett 255(3–4): 289–305. doi: 10.1016/j.epsl.2006.12.030CrossRefGoogle Scholar
  42. Schandl ES, O’Hanley DS, Wicks FJ (1989) Rodingites in serpentinized ultramafic rocks of the Abitibi greenstone belt, Ontario. Can Mineral 27(4): 579–591Google Scholar
  43. Stanger G (1985) Silicified serpentinite in the Semail nappe of Oman. Lithos 18: 13–22. doi: 10.1016/0024–4937(85)90003–9CrossRefGoogle Scholar
  44. Sugimoto T, Shibata T, Yoshikawa M (2007) Procedure of making a fused glass bead for whole rock major elements analyses by X-ray fluorescence spectrometer RIGAKU SYSTEM3270. Annual report of Institute for Geothermal Sciences, Graduate School of Science, Kyoto University FY2006: 44–47Google Scholar
  45. Trommsdorff V, Connolly JAD (1990) Constraints on phase diagram topology for the system CaO-MgO-SiO-CO-HO. Contrib Mineral Petrol 104(1): 1–7. doi: 10.1007/BF00310641CrossRefGoogle Scholar
  46. Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272: 423–437CrossRefGoogle Scholar
  47. Yoshitake N, Arai S, Ishida Y, Tamura A (2009) Geochemical characteristics of chloritization of mafic crust from the northern Oman ophiolite: Implications for estimating the chemical budget of hydrothermal alteration of the oceanic lithosphere. J Mineral Petrol Sci 104: 156–163. doi: 10.2465/jmps.081022bCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marie Python
    • 1
    • 2
  • Masako Yoshikawa
    • 3
  • Tomoyuki Shibata
    • 3
  • Shoji Arai
    • 1
  1. 1.Division of Earth and Environmental SciencesGraduate School of Natural Science and Technology, Kanazawa University – Kakuma-machiKanazawaJapan
  2. 2.Institute for Geothermal Sciences, Graduate School of Science, Kyoto UniversityBeppuJapan
  3. 3.Graduate School of Science, Institute for Geothermal Sciences, Kyoto UniversityBeppuJapan

Personalised recommendations