Advertisement

Discrete Lot-Sizing and Scheduling Including Deterioration and Perishability Constraints

  • Julia Pahl
  • Stefan Voß
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 46)

Abstract

Constraints on the lifetime of items force organizations to carefully plan their production in cooperation with their supply chain partners up- and downstream along the chain. This is important because waiting times due to suboptimal planning give rise to increasing lead times and, consequently, to deterioration and thus decreasing quality of items so that, in the worst case, they cannot be used. Increased costs, delivery delays, quality decreases and unsatisfied customers are negative effects that can be avoided by accounting for product depreciation in the production process. We highlight the importance of including deterioration and perishability in planning decisions and present well-known discrete lot-sizing and scheduling models extended in this regard. The effects on plans derived by these models including depreciation is shown using a numerical example.

Keywords

Production Planning Lot-Sizing Scheduling Deterioration Perishability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trigeiro, W., Thomas, L., McClain, J.O.: Capacitated lot-sizing with setup times. Management Science 35(3), 353–366 (1989)CrossRefGoogle Scholar
  2. 2.
    Andijani, A., Al-Dajani, M.: Analysis of deteriorating inventory/production systems using a linear quadratic regulator. European Journal of Operational Research 106(1), 82–89 (1998)CrossRefGoogle Scholar
  3. 3.
    Dave, U.: A probabilistic scheduling period inventory model for deteriorating items with lead times. Zeitschrift für Operations Research 30(5), A 229–A 237 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ghare, P.M., Schrader, G.F.: A model for exponentially decaying inventories. Journal of Industrial Engineering 14, 238–243 (1963)Google Scholar
  5. 5.
    Shah, B., Shah, N., Shah, Y.: EOQ model for time-dependent deterioration rate with a temporary price discount. Asia Pacific Journal of Operational Research 22(4), 479–485 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    Zhao, P.X.: An EOQ model for items with Weibull distribution deterioration. In: 2nd IEEE Conference on Industrial Electronics and Applications, pp. 451–454 (2007)Google Scholar
  7. 7.
    Ketzenberg, M., Ferguson, M.: Sharing information to manage perishables (ed. 2). Working Paper (2005), http://smartech.gatech.edu/handle/1853/7098 (last call Janaury 2010)
  8. 8.
    Pahl, J., Voß, S., Woodruff, D.: Production planning with deterioration constraints: A survey. In: Ceroni, J. (ed.) The Development of Collaborative Production and Service Systems in Emergent Economies, Proceedings of the 19th International Conference on Production Research. IFPR, Valparaiso (2007)Google Scholar
  9. 9.
    Goyal, S.K., Giri, B.C.: Recent trends in modeling deteriorating inventory. European Journal of Operations Research 134(1), 1–16 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ferguson, M.E., Koenigsberg, O.: Production and pricing decisions: How should a firm manage a product with deteriorating quality (ed. 2). Preliminary Draft, Internet-Source (2005), http://smartech.gatech.edu/handle/1853/7078
  11. 11.
    Tsiros, M., Heilman, C.M.: The effect of expiration dates and perceived risk on purchasing behavior in grocery store perishable categories. Journal of Marketing 69, 114–129 (2005)CrossRefGoogle Scholar
  12. 12.
    Wee, H.M.: Economic production lot size model for deteriorating items with partial backordering. Computers & Industrial Engineering 24(3), 449–458 (1993)CrossRefGoogle Scholar
  13. 13.
    Staggemeier, A.T., Clark, A.R.: A survey on lot-sizing and scheduling models. In: 23rd Annual Symposium of the Brazilian Operational Research Society (SOBRAPO) (2001)Google Scholar
  14. 14.
    Brahimi, N., Dauzere-Peres, S., Najid, N.M., Nordli, A.: Single item lot sizing problems. European Journal of Operational Research 168(1), 1–16 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Comelli, M., Gourgand, M., Lemoine, D.: A review of tactical planning models. Journal of Systems Science and Systems Engineering 17(2), 204–229 (2008)CrossRefGoogle Scholar
  16. 16.
    Karimi, B., Ghomi, F.S., Wilson, J.: The capacitated lot sizing problem: a review of models and algorithms. Omega 31, 365–378 (2003)CrossRefGoogle Scholar
  17. 17.
    Quadt, D., Kuhn, H.: Capacitated lot-sizing with extensions: A review. 4OR: A Quarterly Journal of Operations Research 6(1), 61–83 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chu, L.Y., Hsu, V.N., Max Shen, Z.-J.: An economic lot-sizing problem with perishable inventory and economics of scale costs: Approximation solution and worst case analysis. Naval Research Logistics 52(6), 536–548 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hsu, V.N.: Dynamic economic lot size model with perishable inventory. Management Science 46(8), 1159–1169 (2000)CrossRefGoogle Scholar
  20. 20.
    Hsu, V.N.: An economic lot size model for perishable products with age-dependent inventory and backorder costs. IIE Transactions 35(8), 775–780 (2003)CrossRefGoogle Scholar
  21. 21.
    Häselbarth, L., Scholl, A.: Dynamische Bestellmengenplanung für verderbliche Luxusgüter. Technical Report 13, Wirtschaftswissenschaftliche Fakultät, Friedrich-Schiller-Universität Jena (2003)Google Scholar
  22. 22.
    Pierskalla, W., Roach, C.: Optimal issuing policies for perishable inventory. Management Science 18(11), 603–614 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gawiejnowicz, S.: Scheduling deteriorating jobs subject to job or machine availability constraints. European Journal of Operational Research 180(1), 472–478 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Dave, U.: On a discrete-in-time deterministic inventory model for deteriorating items with time proportional demand. Optimization 16(3), 449–461 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Suerie, C., Stadtler, H.: The capacitated lot-sizing problem with linked lot sizes. Management Science 49(8), 1039–1054 (2003)CrossRefGoogle Scholar
  26. 26.
    Almada-Lobo, B., Klabjan, D., Carravilla, M.A., Oliviera, J.F.: Multiple machine continuous setup lot-sizing with sequence-dependent setups. Computational Optimization and Applications (2009)Google Scholar
  27. 27.
    Karmarkar, U.S., Kekre, S., Kekre, S.: Capacity analysis of a manufacturing cell. Journal of Manufacturing Systems 6(3), 165–175 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Julia Pahl
    • 1
  • Stefan Voß
    • 1
  1. 1.Institute of Information SystemsUniversity of HamburgHamburg

Personalised recommendations