A Resource Based Mixed Integer Modelling Approach for Integrated Operational Logistics Planning

  • Jens Peter Kempkes
  • Achim Koberstein
  • Leena Suhl
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 46)


The paper considers the operational planning task in the supply network of an Original Equipment Manufacturer (OEM), including the logistics from first tier suppliers to the assembly areas of the OEM. We propose an integrated planning approach both for the external and internal part of the network. The approach is based on a mixed-integer optimization model with a multi-commodity network design formulation. We present a generic modelling construct, which is capable of representing various tariff structures and discount schemes. These tariffs and discounts are parameters to the model and can be configured without altering the model formulation. Finally, we present a case study including numerical results for instances of practically relevant magnitude using a standard solver as well as a specially tailored heuristic algorithm.


Transportation Mode Quantity Discount Original Equipment Manufacturer Resource Group Supply Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glaser, H.: Zur Bestimmung kostenoptimaler Bestellmengen bei deterministisch gleichbleibendem und deterministisch schwankendem Bedarf. PhD thesis, Universität zu Köln (1973)Google Scholar
  2. 2.
    Günther, H.: Bestellmengenplanung aus logistischer Sicht. Zeitschrift für Betriebswirtschaft 61(5), 641–666 (1991)Google Scholar
  3. 3.
    Günther, H.: Ein Verfahren zur Bestellmengenplanung bei beschränkter Lagerkapazität. In: Operations Research Proceedings 1990, pp. 491–498. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Reith-Ahlemeier, G.: Ressourcenorientierte Bestellmengenplanung und Lieferantenauswahl: Modelle und Algorithmen für Supply-Chain-Optimierung und E-Commerce. Reith-Ahlemeier, G., Leichlingen (2002)Google Scholar
  5. 5.
    Stadtler, H.: A general quantity discount and supplier selection mixed integer programming model. OR Spectrum 29(4), 723–744 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jaruphongsa, W., ÇEtinkaya, S., Lee, C.: A dynamic lot-sizing model with multi-mode replenishments: polynomial algorithms for special cases with dual and multiple modes. IIE Transactions 37(5), 453–467 (2005)CrossRefGoogle Scholar
  7. 7.
    Jaruphongsa, W., Lee, C.: Dynamic lot-sizing problem with demand time windows and container-based transportation cost. Optimization Letters 2, 39–51 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boctor, F., Laporte, G., Renaud, J.: Models and algorithms for the dynamic-demand joint replenishment problem. International Journal of Production Research 42(13), 2667–2678 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cha, B., Moon, I.: The joint replenishment problem with quantity discounts under constant demand. OR Spectrum 27(4), 569–581 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, P.S.: Cost Minimization in Multi-Commodity, Multi-Mode generalized Networks with Time Windows. PhD thesis, Texas A&M University (2005)Google Scholar
  11. 11.
    Schönsleben, P.: Integrales Logistikmanagement: Operations and Supply Chain Management in umfassenden Wertschöpfungsnetzwerken. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Sahin, B., Yilmaz, H., Ust, Y., Guneri, A.F., Gulsun, B.: An approach for analysing transportation costs and a case study. European Journal of Operational Research (2007)Google Scholar
  13. 13.
    Pooler, V., Pooler, D.: Purchasing and Supply Management: Creating the Vision. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  14. 14.
    Kempkes, J.P.: Kostenoptimale Materialflüsse in der operativen Zulieferungslogistik der Nutzfahrzeugindustrie. PhD thesis, Universität Paderborn (2009)Google Scholar
  15. 15.
    Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) CP 2001. Fahle, T., Schamberger, S., Sellmann, M, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Sherali, H., Smith, J.: Improving Discrete Model Representations via Symmetry Considerations. Management Science 47(10), 1396–1407 (2001)CrossRefGoogle Scholar
  17. 17.
    Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial Optimization. PhD thesis, Universität Paderborn (2002)Google Scholar
  18. 18.
    Stickel, M.: Planung und Steuerung von Crossdocking-Zentren. PhD thesis, Universität Karlsruhe (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jens Peter Kempkes
    • 1
  • Achim Koberstein
    • 2
  • Leena Suhl
    • 2
  1. 1.ORCONOMY GmbH Paderborn 
  2. 2.Decision Support and Operations Research Lab (DS&OR-Lab)University of Paderborn 

Personalised recommendations