An Autonomous Control Concept for Production Logistics

  • Henning Rekersbrink
  • Bernd Scholz-Reiter
  • Christian Zabel
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 46)


The German Collaborative Research Centre 637 ‘Autonomous Cooperating Logistic Processes’ tries to make a paradigm shift from central planning to autonomous control in the field of logistics. Among other things, autonomous routing algorithms based on internet routing protocols are developed. The Distributed Logistics Routing Protocol (DLRP) was originally designed for transport networks to match goods and vehicles and to continuously make route decisions. Now the protocol was transferred to production logistics as a promising autonomous control method. The DLRP enables the abilities for logistic objects, orders and machines, to make own decisions with the information actually and locally available. In contrast to common scheduling algorithms, the DLRP is not a planning, but a control method with the capability for multiple, user defined optimization goals. The new autonomous control concept for production logistics will be presented in this paper and a first evaluation with common scheduling heuristics will be given.


Flexible Flowshop Scheduling Dynamics Autonomous Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scholz-Reiter, B., Görges, M., Philipp, T.: Autonomously controlled production systems-Influence of autonomous control level on logistic performance. CIRP Annals – Manufacturing Technology 58(1), 395–398 (2009)CrossRefGoogle Scholar
  2. 2.
    Windt, K., Jeken, O.: Allocation Flexibility – A New Flexibility Type as an Enabler for Autonomous Control in Production Logistics. In: 42nd CIRP Conference on Manufacturing Systems (2009)Google Scholar
  3. 3.
    Scholz-Reiter, B., Teucke, M., Özsahin, M.-E., Sowade, S.: Smart Label – supported Autonomous Supply Chain Control in the Apparel Industry. In: 5th International Congress on Logistics and SCM Systems (ICLS 2009), pp. 44–52 (2009)Google Scholar
  4. 4.
    Böse, F., Piotrowski, J., Scholz-Reiter, B.: Autonomously controlled Storage Management in Vehicle Logistics - Applications of RFID and Mobile Computing Systems. International Journal of RF Technologies: Research and Applications 1(1), 57–76 (2009)CrossRefGoogle Scholar
  5. 5.
    Freitag, M., Herzog, O., Scholz-Reiter, B.: Selbststeuerung logistischer Prozesse – Ein Paradigmenwechsel und seine Grenzen. Industrie Management 20(1), 23–27 (2004)Google Scholar
  6. 6.
    Rekersbrink, H., Makuschewitz, T., Scholz-Reiter, B.: A distributed routing concept for vehicle routing problems. Logistics Research 1(1), 45–52 (2008)CrossRefGoogle Scholar
  7. 7.
    Scholz-Reiter, B., Rekersbrink, H., Freitag, M.: Internet routing protocols as an autonomous control approach for transport networks. In: 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, pp. 341–345 (2006)Google Scholar
  8. 8.
    Philipp, T., Böse, F., Windt, K.: Evaluation of Autonomously Controlled Logistic Processes. In: 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, pp. 347–352 (2006)Google Scholar
  9. 9.
    Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F.: An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria. Otto-von-Guericke-Universität Magdeburg, 1-23 (2005) (Preprint May 28)Google Scholar
  10. 10.
    Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of scheduling. Addison-Wesley, Reading (1967)zbMATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  12. 12.
    Park, Y.B., Pegden, C.D., Enscore, E.E.: Survey and evaluation of static flowshop scheduling heuristics. International Journal of Production Research 22, 127–141 (1984)zbMATHCrossRefGoogle Scholar
  13. 13.
    Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research 165, 479–494 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jones, A., Rabelo, L.C.: Survey of Job Shop Scheduling Techniques. National Institute of Standards and Technology (2000)Google Scholar
  15. 15.
    Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time - a quick method of obtaining a near optimum. Operational Research Quarterly 16(1), 101–107 (1965)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n-job m-machine sequencing problem. Management Science 16(10), 630–637 (1970)CrossRefGoogle Scholar
  17. 17.
    Gupta, J.N.D.: A functional heuristic algorithm for the flow-shop scheduling problem. Operations Research Quarterly 22(1), 39–47 (1971)zbMATHCrossRefGoogle Scholar
  18. 18.
    Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Management Science 23(11), 1174–1182 (1977)zbMATHCrossRefGoogle Scholar
  19. 19.
    Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Henning Rekersbrink
    • 1
  • Bernd Scholz-Reiter
    • 1
  • Christian Zabel
    • 1
  1. 1.BIBA - Bremer Institut für Produktion und Logistik GmbHBremenGermany

Personalised recommendations