Advertisement

Keldysh Green’s function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing

  • Jonathan KeelingEmail author
  • Marzena H. Szymańska
  • Peter B. Littlewood
Chapter
Part of the NanoScience and Technology book series (NANO, volume 0)

Abstract

Solid state quantum condensates often differ from previous examples of condensates (such as Helium, ultra-cold atomic gases, and superconductors) in that the quasiparticles condensing have relatively short lifetimes, and so as for lasers, external pumping is required to maintain a steady state. On the other hand, compared to lasers, the quasiparticles are generally more strongly interacting, and therefore better able to thermalise. This leads to questions of how to describe such non-equilibrium condensates, and their relation to equilibrium condensates and lasers. This chapter discusses in detail how the non-equilibrium Green’s function approach can be applied to the description of such a non-equilibrium condensate, in particular, a system of microcavity polaritons, driven out of equilibrium by coupling to multiple baths. By considering the steady states, and fluctuations about them, it is possible to provide a description that relates both to equilibrium condensation and to lasing, while at the same time, making clear the differences from simple lasers.

Keywords

Equilibrium Condensate Simple Laser Effective Chemical Potential Polariton Condensate Quantum Regression Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443(7110), 409 (2006)CrossRefADSGoogle Scholar
  2. 2.
    S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006)CrossRefADSGoogle Scholar
  3. 3.
    J.P. Eisenstein, A.H. MacDonald, Nature 432, 691 (2004)CrossRefADSGoogle Scholar
  4. 4.
    C. Rüegg, N. Cavadinin, A. Furrer, H.U. Güdel, K. Krämer, H. Mukta, A. Wildes, K. Habicht, P. Worderwisch, Nature 423, 62 (2003)CrossRefADSGoogle Scholar
  5. 5.
    L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Nature 417, 47 (2002)CrossRefADSGoogle Scholar
  6. 6.
    L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002)CrossRefADSGoogle Scholar
  7. 7.
    D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature 418, 754 (2002)CrossRefADSGoogle Scholar
  8. 8.
    E.W. Streed, A.P. Chikkatur, T.L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G.K. Campbell, D.E. Pritchard, W. Ketterle, Rev. Sci. Instrum. 77, 023106 (2006)CrossRefADSGoogle Scholar
  9. 9.
    A.T. Hammack, L.V. Butov, L. Mouchliadis, A.L. Ivanov, A.C. Gossard, Phys. Rev. B 76, 193308 (2007)CrossRefADSGoogle Scholar
  10. 10.
    H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Phys. Rev. Lett. 97(14), 146402 (2006)CrossRefADSGoogle Scholar
  11. 11.
    M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998)CrossRefADSGoogle Scholar
  12. 12.
    V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, F. Tassone, Phase Transitions 68(1), 169 (1999)CrossRefGoogle Scholar
  13. 13.
    Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics, Springer Tracts in Modern Physics, vol. 167 (Springer-Verlag, Berlin, 2000)Google Scholar
  14. 14.
    C. Ciuti, P. Schwendimann, A. Quattropani, Semicond. Sci. Technol. 18, S279 (2003)CrossRefADSGoogle Scholar
  15. 15.
    B. Deveaud (ed.). Special Issue: Physics of Semiconductor Microcavities, Phys. Stat. Sol. (b), vol. 242 (2005)Google Scholar
  16. 16.
    J. Keeling, F.M. Marchetti, M.H. Szymańska, P.B. Littlewood, Semicond. Sci. Technol. 22(5), R1 (2007)CrossRefADSGoogle Scholar
  17. 17.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford Univeristy Press, Oxford, 2007)CrossRefGoogle Scholar
  18. 18.
    H. Cao, J. Phys. A: Math. Gen. 38(49), 10497 (2005)CrossRefADSGoogle Scholar
  19. 19.
    H.E. Türeci, L. Ge, S. Rotter, A.D. Stone, Science 320, 643 (2008)CrossRefADSGoogle Scholar
  20. 20.
    M.O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle, Phys. Rev. Lett. 78, 582(1997)CrossRefADSGoogle Scholar
  21. 21.
    I. Bloch, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999)CrossRefADSGoogle Scholar
  22. 22.
    E.W. Hagley, L. Deng, M. Kozuma, J. Wen, S.L. Rolston, W.D. Phillips, Science 283, 1706 (1999)CrossRefADSGoogle Scholar
  23. 23.
    M.H. Szymanska, P.B. Littlewood, Solid State Commun. 124, 103 (2002)CrossRefADSGoogle Scholar
  24. 24.
    M.H. Szymanska, P.B. Littlewood, B.D. Simons, Phys. Rev. A 68, 013818 (2003)CrossRefADSGoogle Scholar
  25. 25.
    A.A. Abrikosov, L.P. Gor'kov, Sov. Phys. JETP 12, 1243 (1960)Google Scholar
  26. 26.
    P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959)CrossRefADSGoogle Scholar
  27. 27.
    F.M. Marchetti, B.D. Simons, P.B. Littlewood, Phys. Rev. B 70, 155327 (2004)CrossRefADSGoogle Scholar
  28. 28.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006)CrossRefADSGoogle Scholar
  29. 29.
    M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. B 75(19), 195331 (2007)CrossRefADSGoogle Scholar
  30. 30.
    A. Kamenev, in Nanophysics: Coherence and transport, Les Houches, vol. LXXXI, ed. by H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard (Elsevier, Amsterdam, 2005), p. 177CrossRefGoogle Scholar
  31. 31.
    L.V. Keldysh, JETP 20, 1018 (1965)MathSciNetGoogle Scholar
  32. 32.
    P. Danielewicz, Ann. Phys. 152, 239 (1984)CrossRefADSGoogle Scholar
  33. 33.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Course of theoretical Physics, vol. 10 (Butterworth-Heinemann, Oxford, 1981)Google Scholar
  34. 34.
    F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Phys. Rev. B 56, 7554 (1997)CrossRefADSGoogle Scholar
  35. 35.
    F. Tassone, Y. Yamamoto, Phys. Rev. B 59, 10830 (1999)CrossRefADSGoogle Scholar
  36. 36.
    G. Malpuech, A. Di Carlo, A. Kavokin, J.J. Baumberg, M. Zamfirescu, P. Lugli, Appl. Phys. Lett. 81, 412 (2002)CrossRefADSGoogle Scholar
  37. 37.
    G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Phys. Rev. B 65(15), 153310 (2002)CrossRefADSGoogle Scholar
  38. 38.
    D. Porras, C. Ciuti, J.J. Baumberg, C. Tejedor, Phys. Rev. B 66, 085304 (2002)CrossRefADSGoogle Scholar
  39. 39.
    T.D. Doan, H.T. Cao, D.B. Tran Thoai, H. Haug, Phys. Rev. B 72, 085301 (2005)CrossRefADSGoogle Scholar
  40. 40.
    T.D. Doan, H.T. Cao, D.B. Tran Thoai, H. Haug, Phys. Rev. B 74, 115316 (2006)CrossRefADSGoogle Scholar
  41. 41.
    T.D. Doan, H.T. Cao, D.B. Tran Thoai, H. Haug, Phys. Rev. B 78, 205306 (2008)CrossRefADSGoogle Scholar
  42. 42.
    B. Mieck, H. Haug, Phys. Rev. B 66, 075111 (2002)CrossRefADSGoogle Scholar
  43. 43.
    I. Carusotto, C. Ciuti, Phys. Rev. B 72, 125335 (2005)CrossRefADSGoogle Scholar
  44. 44.
    M. Wouters, V. Savona, Phys. Rev. B 79, 165302 (2009)CrossRefADSGoogle Scholar
  45. 45.
    M. Wouters, I. Carusotto, Phys. Rev. Lett. 99(14), 140402 (2007)CrossRefADSGoogle Scholar
  46. 46.
    M. Wouters, I. Carusotto, C. Ciuti, Phys. Rev. B 77, 115340 (2008)CrossRefADSGoogle Scholar
  47. 47.
    J. Keeling, N.G. Berloff, Phys. Rev. Lett. 100, 250401 (2008)CrossRefADSGoogle Scholar
  48. 48.
    L. Kadanoff, G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, New York, 1962)zbMATHGoogle Scholar
  49. 49.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)Google Scholar
  50. 50.
    G.W. Ford, R.F. O'Connel, Phys. Rev. Lett. 77, 798 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  51. 51.
    P.R. Eastham, P.B. Littlewood, Solid State Commun. 116, 357 (2000)CrossRefADSGoogle Scholar
  52. 52.
    J. Keeling, P.R. Eastham, M.H. Szymanska, P.B. Littlewood, Phys. Rev. Lett. 93, 226403 (2004)CrossRefADSGoogle Scholar
  53. 53.
    F.M. Marchetti, J. Keeling, M.H. Szymańska, P.B. Littlewood, Phys. Rev. Lett. (2006)Google Scholar
  54. 54.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part II, Course of theoretical Physics, vol. 5 (Butterworth-Heinemann, Oxford, 1980)Google Scholar
  55. 55.
    A. Abrikosov, L. Gorkov, I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975)Google Scholar
  56. 56.
    M. Randeria, in Bose-Einstein Condensation, ed. by A. Griffin, D. Snoke, S. Stringari (Cambridge University Press, Cambridge, 1995), p. 355Google Scholar
  57. 57.
    M.H. Szymańska, Bose condensation and lasing in optical microstructures. Ph.D. thesis, University of Cambridge (2002). ArXiv:cond-mat/0204294Google Scholar
  58. 58.
    N.M. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959)zbMATHCrossRefMathSciNetADSGoogle Scholar
  59. 59.
    V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (D. Reidel, Dordrecht, 1983)zbMATHGoogle Scholar
  60. 60.
    M. Wouters, I. Carusotto, Phys. Rev. A 76, 043807 (2007)CrossRefADSGoogle Scholar
  61. 61.
    I. Carusotto, C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004)CrossRefADSGoogle Scholar
  62. 62.
    C. Ciuti, I. Carusotto, Phys. Stat. Sol. (b) 242, 2224 (2005)CrossRefADSGoogle Scholar
  63. 63.
    A. Amo, J. Lefrére, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Nature Phys. 5, 805 (2009)CrossRefADSGoogle Scholar
  64. 64.
    D.M. Whittaker, P.R. Eastham, EPL (Europhysics Letters) 87(2), 27002 (2009)CrossRefADSGoogle Scholar
  65. 65.
    R. Kubo, J. Phys. Soc. Jap 9, 935 (1954)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan Keeling
    • 1
    Email author
  • Marzena H. Szymańska
    • 2
  • Peter B. Littlewood
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Department of PhysicsUniversity of Warwick and London Centre for NanotechnologyLondonUnited Kingdom

Personalised recommendations