Optimizing Search and Ranking in Folksonomy Systems by Exploiting Context Information

  • Fabian Abel
  • Nicola Henze
  • Daniel Krause
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 45)


Tagging systems enable users to annotate resources with freely chosen keywords. The evolving bunch of tag assignments is called folksonomy and there exist already some approaches that exploit folksonomies to improve resource retrieval. In this paper, we analyze and compare graph-based ranking algorithms: FolkRank and SocialPageRank. We enhance these algorithms by exploiting the context of tags, and evaluate the results on the GroupMe! dataset. In GroupMe!, users can organize and maintain arbitrary Web resources in self-defined groups. When users annotate resources in GroupMe!, this can be interpreted in context of a certain group. The grouping activity itself is easy for users to perform. However, it delivers valuable semantic information about resources and their context. We present GRank that uses the context information to improve and optimize the detection of relevant search results, and compare different strategies for ranking result lists in folksonomy systems.


Social media Folksonomy systems Search Ranking Optimization FolkRank GFolkRank SocialPageRank GRank 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, F., Frank, M., Henze, N., Krause, D., Plappert, D., Siehndel, P.: GroupMe! – Where Semantic Web meets Web 2.0. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 871–878. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abel, F., Henze, N., Krause, D.: Exploiting additional Context for Graph-based Tag Recommendations in Folksonomy Systems. In: Int. Conf. on Web Intelligence and Intelligent Agent Technology (WI-IAT 2008). ACM Press, New York (2008)Google Scholar
  3. 3.
    Abel, F., Henze, N., Krause, D., Kriesell, M.: On the effect of group structures on ranking strategies in folksonomies. In: King, I., Baeza-Yates, R. (eds.) Weaving Services and People on the World Wide Web. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing Web Search using Social Annotations. In: Proc. of 16th Int. World Wide Web Conference (WWW 2007), pp. 501–510. ACM Press, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Haveliwala, T.H.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003)CrossRefGoogle Scholar
  6. 6.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A Social Bookmark and Publication Sharing System. In: Proc. First Conceptual Structures Tool Interoperability Workshop, Aalborg, pp. 87–102 (2006)Google Scholar
  7. 7.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: FolkRank: A Ranking Algorithm for Folksonomies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. of eighth International Conference on Knowledge Discovery and Data Mining (KDD), Edmonton, Alberta, Canada, pp. 133–142. ACM Press, New York (2002)CrossRefGoogle Scholar
  9. 9.
    Li, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proc. of the 17th Int. World Wide Web Conference (WWW 2008), pp. 675–684. ACM Press, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. of the 17th Conf. on Hypertext and Hypermedia, pp. 31–40. ACM Press, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Vander Wal, T.: Folksonomy (2007),
  12. 12.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  13. 13.
    Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proc. of 17th Int. World Wide Web Conference (WWW 2008), pp. 327–336. ACM Press, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabian Abel
    • 1
  • Nicola Henze
    • 1
  • Daniel Krause
    • 1
  1. 1.IVS – Semantic Web GroupLeibniz University HannoverHannoverGermany

Personalised recommendations