ArhiNet – A Knowledge-Based System for Creating, Processing and Retrieving Archival eContent

  • Ioan Salomie
  • Mihaela Dinsoreanu
  • Cristina Pop
  • Sorin Suciu
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 45)

Abstract

This paper addresses the problem of creating, processing and querying semantically enhanced eContent from archives and digital libraries. We present an analysis of the archival domain, resulting in the creation of an archival domain model and of a domain ontology core. Our system adds semantic mark-up to the historical documents content, thus enabling document and knowledge retrieval as response to natural language ontology-guided queries. The system functionality follows two main workflows: (i) semantically enhanced eContent generation and knowledge acquisition and (ii) knowledge processing and retrieval. Within the first workflow, the relevant domain information is extracted from documents written in natural languages, followed by semantic annotation and domain ontology population. In the second workflow, ontologically guided natural language queries trigger reasoning processes that provide relevant search results. The paper also discusses the transformation of the OWL domain ontology into a hierarchical data model, thus providing support for the efficient ontology processing.

Keywords

Archival domain model and ontology Knowledge acquisition Hierarchical data model Semantic annotation Ontology guided query Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amardeilh, F.: Web Sémantique et Informatique Linguistique: Propositions Méthodolo giques et réalisation d’une plateforme logicielle. These de Doctorat, Universite Paris X-Nanterrere (2007)Google Scholar
  2. 2.
    Amardeilh, F.: OntoPop or how to annotate documents and populate ontologies from texts. In: Proceedings of the ESWC 2006 Workshop on Mastering the Gap: From Information Extraction to Semantic Representation, Budva, Montenegro, June 12. CEUR Workshop Proceedings (2006), ISSN 1613-0073Google Scholar
  3. 3.
    Buitelaar, P., Cimiano, P., Racioppa, S., Siegel, M.: Ontology-based Information Extraction with SOBA. In: Proceedings of the International Conference on Language Resources and Evaluation, pp. 2321–2324 (2006)Google Scholar
  4. 4.
    Laclavik, M., Ciglan, M., Seleng, M., Krajei, S.: Ontea: Semi-automatic Pattern based Text Annotation empowered with Information Retrieval Methods. In: Tools for acquisition, organisation and presenting of information and knowledge: Proceedings in Informatics and Information Technologies, Kosice, Vydavatelstvo STU, Bratislava, part 2, pp. 119–129 (2007), ISBN 978-80-227-2716-7Google Scholar
  5. 5.
    Schäfer, U.: Integrating Deep and Shallow Natural Language Processing Components – Representations and Hybrid Architectures, Saarbrücken Dissertations in Computational Linguistics and Language Te, DFKI GmbH and Computational Linguistics Department, Saarland University, Saarbrücken, Germany (2007)Google Scholar
  6. 6.
    Tablan, V., Maynard, D., Bontcheva, K., Cunningham, H.: Gate – An Application Developer’s Guide (2004), http://gate.ac.uk/
  7. 7.
    del Mar Roldán-García, M., Aldana-Montes, J.F.: A Tool for Storing OWL Using Database Technology. In: Proceedings of the OWLED 2005 Workshop on OWL: Experiences and Di-rections, Galway, Ireland, CEURWS.org (2005)Google Scholar
  8. 8.
    Vysniauskas, E., Nemuraite, L.: Transforming Ontology representation from OWL to relational Database. ISSN 1392 – 124x Information Technology and Control 35(3A), 333–343 (2006)Google Scholar
  9. 9.
    Zhuge, H., Xing, Y., Shi, P.: Resource Space Model, OWL and Database: Mapping and Integration. ACM Transactions on Internet Technology 8(4), Article 20 (2008)Google Scholar
  10. 10.
    Trissl, S., Leser, U.: Querying ontologies in relational database systems. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 63–79. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic Mapping of OWL Ontologies into JAVA. In: Proceedings of the Sixteenth International Conference on Engineering & Knowledge Engineering (SEKE 2004), Banff, Alberta, Canada (2004)Google Scholar
  12. 12.
    Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A Guided Input Natural Language Search Engine for Querying Ontologies. In: 2006 Jena User Conference, Bristol, U.K. (2006), http://www.ifi.uzh.ch/ddis/staff/goehring/btw/files/Bernstein_JenaConf_2006.pdf
  13. 13.
    Bernstein, A., Kaufmann, E.: GINO – A Guided Input natural language Ontology Editor. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 144–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lopez, V., Motta, E., Sabou, M., Fernandez, M.: Question Answering on the Real Semantic Web. In: 6th International and 2nd Asian Semantic Web Conference (ISWC 2007+ASWC 2007) (2007)Google Scholar
  15. 15.
    The ArhiNet Research Project, http://dsrl.coned.utcluj.ro/
  16. 16.
    Cluj County National Archives (CCNA), http://www.clujnapoca.ro/arhivelenationale/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ioan Salomie
    • 1
  • Mihaela Dinsoreanu
    • 1
  • Cristina Pop
    • 1
  • Sorin Suciu
    • 1
  1. 1.Department of Computer ScienceTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations