The Herring Gull Complex (Larus argentatus - fuscus - cachinnans) as a Model Group for Recent Holarctic Vertebrate Radiations

  • Dorit Liebers-Helbig
  • Viviane Sternkopf
  • Andreas J. Helbig
  • Peter de Knijff


Under what circumstances speciation in sexually reproducing animals can occur without geographical disjunction is still controversial. According to the ring species model, a reproductive barrier may arise through “isolation-by-distance” when peripheral populations of a species meet after expanding around some uninhabitable barrier. The classical example for this kind of speciation is the herring gull (Larus argentatus) complex with a circumpolar distribution in the northern hemisphere. An analysis of mitochondrial DNA variation among 21 gull taxa indicated that members of this complex differentiated largely in allopatry following multiple vicariance and long-distance colonization events, not primarily through “isolation-by-distance”.

In a recent approach, we applied nuclear intron sequences and AFLP markers to be compared with the mitochondrial phylogeography. These markers served to reconstruct the overall phylogeny of the genus Larus and to test for the apparent biphyletic origin of two species (argentatus, hyperboreus) as well as the unexpected position of L. marinus within this complex. All three taxa are members of the herring gull radiation but experienced, to a different degree, extensive mitochondrial introgression through hybridization. The discrepancies between the mitochondrial gene tree and the taxon phylogeny based on nuclear markers are illustrated.


Amplify Fragment Length Polymorphism Mitochondrial Haplotype Faeroe Island Kelp Gull Amplify Fragment Length Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all colleagues who provided samples or helped during field work, the Institute of Ecology (University of Jena) for use of laboratory facilities and M. Ritz for his help with generating the AFLP profiles. M. Braun and S. Bensch made helpful comments on previous versions of this manuscript. This research was supported by two grants from the German Research Foundation to D.L.H. (LI 1049/1-1 and 1-2).


  1. Backström N, Karaiskou N, Leder EH, Gustafsson L, Primmer CR, Qvarnström A, Ellegren H (2008) A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 179:1479–1495PubMedCrossRefGoogle Scholar
  2. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  3. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  4. Bell DA (1997) Hybridization and reproductive performance in gulls of the Larus glaucescens-occidentalis complex. Condor 99:585–594CrossRefGoogle Scholar
  5. Bellemain E, Bermingham E, Ricklefs R (2008) The dynamic evolutionary history of the bananaquit (Coereba flaveola) in the Caribbean revealed by multiple analysis. BMC Evol Biol 8:240. doi: 10.1186/1471-2148-8-240 PubMedCrossRefGoogle Scholar
  6. Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914PubMedCrossRefGoogle Scholar
  7. Bensch S, Helbig AJ, Salomon M, Seibold I (2002) Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Mol Ecol 11:473–481PubMedCrossRefGoogle Scholar
  8. Bensch S, Irwin DE, Irwin JH, Kvist L, Akesson S (2006) Conflicting patterns of mitochondrial and nuclear DNA diversity in Phylloscopus warblers. Mol Ecol 15:161–171PubMedCrossRefGoogle Scholar
  9. Borge T, Webster MT, Andersson G, Sætre GP (2005) Contrasting patterns of polymorphism and divergence on the Z chromosome and autosomes in two Ficedula flycatcher species. Genetics 171:1861–1873PubMedCrossRefGoogle Scholar
  10. Brito PH, Edwards SV (2008) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica. doi: 10.1007/s10709-008-9293-3 PubMedGoogle Scholar
  11. Cain AJ (1954) Animal species and their evolution. Hutchinson House, LondonGoogle Scholar
  12. Cathey JC, Bickham JW, Patton JC (1998) Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer. Evolution 52:1224–1229CrossRefGoogle Scholar
  13. Crochet P-A, Bonhomme F, Lebreton J-D (2000) Molecular phylogeny and plumage evolution in gulls (Larini). J Evol Biol 13:47–57CrossRefGoogle Scholar
  14. Crochet P-A, Lebreton J-D, Bonhomme F (2002) Systematics of large white-headed gulls: patterns of mitochondrial DNA variation in western European taxa. The Auk 119:603–620Google Scholar
  15. de Knijff P, Denkers F, Swelm ND, van Kuiper M (2001) Genetic affinities within the Larus argentatus assemblage revealed by AFLP genotyping. J Mol Evol 52:85–93PubMedGoogle Scholar
  16. de Knijff P, Helbig AJ, Liebers D (2005) The Beringian connection: speciation in the herring gull assemblage of North America. Birding 37:402–411Google Scholar
  17. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  19. Ferris SD, Sage RD, Huang CM, Nielsen JT, Ritte U, Wlson AC (1983) Flow of mitochondrial DNA across a species boundary. Proc Natl Acad Sci USA 80:2290–2294PubMedCrossRefGoogle Scholar
  20. Fleischer RC, McIntosh CE, Tarr CL (1998) Evolution on a volcanic conveyor belt: using phylogenetic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533–545PubMedCrossRefGoogle Scholar
  21. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool (Mol Dev Evol) 304B:64–74CrossRefGoogle Scholar
  22. Geyr von Schweppenburg H (1938) Zur Systematik der fuscus-argentatus-Möwen. J Orn 86:345–365CrossRefGoogle Scholar
  23. Good JM, Hird S, Reid N, Demboski JR, Steppan SJ, Martin-Nims TR, Sullivan J (2008) Ancient hybridization and mitochondrial capture between two species of chipmunk. Mol Ecol 17:1313–1327PubMedCrossRefGoogle Scholar
  24. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRefGoogle Scholar
  25. Haffer J (1982) Systematik und Taxonomie der Larus argentatus - Artengruppe. In: von Blotzheim UN Glutz, Bauer KM (eds) Handbuch der Vögel Mitteleuropas, vol 8. Aula, Wiesbaden, pp 502–514Google Scholar
  26. Helbig AJ (2005) Möwen und Seeschwalben. In: Bauer H-G, Bezzel E, Fiedler W (eds) Kompendium der Vögel Mitteleuropas, vol 1, Nonpasseriformes. Aula, Wiesbaden, pp 573–574Google Scholar
  27. Helbig AJ, Kocum A, Seibold I, Brown MJ (2005) A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level. Mol Phyl Evol 35:147–164CrossRefGoogle Scholar
  28. Ingolfsson A (1970) Hybridization of glaucous gulls Larus hyperboreus and herring gull L. argentatus in Iceland. Ibis 112:340–362CrossRefGoogle Scholar
  29. Irwin DE, Irwin JH, Price TD (2001a) Ring species as bridges between microevolution and speciation. Genetica 112–113:223–243PubMedCrossRefGoogle Scholar
  30. Irwin DE, Bensch S, Price TD (2001b) Speciation in a ring. Nature 409:333–337PubMedCrossRefGoogle Scholar
  31. Jakobsson M, Scholz SW, Scheet P et al (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003PubMedCrossRefGoogle Scholar
  32. Lao O, Lu TT, Nothnagel M, Junge O et al (2008) Correlation between genetic and geographic structure in Europe. Curr Biol 18:1241–1248PubMedCrossRefGoogle Scholar
  33. Li JZ, Absher DM, Tang H, Southwick AM et al (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–1104PubMedCrossRefGoogle Scholar
  34. Liebers D, Helbig AJ (1999) Phänotypische Charakterisierung und systematische Stellung der Armenienmöwe Larus armenicus. Limicola 13:281–321Google Scholar
  35. Liebers D, Helbig AJ (2002) Phylogeography and colonization history of lesser black-backed gulls (Larus fuscus) as revealed by mtDNA sequences. J Evol Biol 15:1021–1033CrossRefGoogle Scholar
  36. Liebers D, Helbig AJ, de Knijff P (2001) Genetic differentiation and phylogeography of gulls in the Larus fuscus - cachinnans group (Aves: Charadriiformes): inferences from mitochondrial control region sequences. Mol Ecol 10:2447–2462PubMedCrossRefGoogle Scholar
  37. Liebers D, de Knijff P, Helbig AJ (2004) The herring gull complex is not a ring species. Proc R Soc Lond B 271:893–901CrossRefGoogle Scholar
  38. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237PubMedCrossRefGoogle Scholar
  39. Malling Olsen K, Larsson H (2003) Gulls of Europe, Asia and North America. Helm identification guides. Black, LondonGoogle Scholar
  40. Mank JE, Axelsson E, Ellegren H (2007) Fast-X on the Z: Rapid evolution of sex-linked genes in birds. Gen Res 17:618–624CrossRefGoogle Scholar
  41. Mayr E (1942) Systematics and the origin of species. Dover, New YorkGoogle Scholar
  42. Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol 14:2459–2464PubMedCrossRefGoogle Scholar
  43. Novembre J, Johnson T, Bryc K et al (2008) Genes mirror geography within Europe. Nature 456:98–101PubMedCrossRefGoogle Scholar
  44. Panov EN, Monzikov DG (1999) Intergradation between the herring gull Larus argentatus and the southern herring gull Larus cachinnans in European Russia. Russ J Zool 78:334–348Google Scholar
  45. Parchman TL, Benkman CW, Britch SC (2006) Pattern of genetic variation in the adaptive radiation of New World crossbills (Aves: Loxia). Mol Ecol 15:1873–1887PubMedCrossRefGoogle Scholar
  46. Pons J-M, Hassanin A, Crochet P-A (2005) Phylogenetic relationships within Laridae (Charadriiformes: Aves) inferred from mitochondrial markers. Mol Phyl Evol 37:686–699CrossRefGoogle Scholar
  47. Prager EM, Sage RD, Gyllensten U et al (1993) Mitochondrial DNA sequences diversity and the colonization of Scandinavia by house mice from East Holstein. Biol J Linn Soc 50:85–122CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  49. Qvarnström A, Bailey RI (2009) Speciation through evolution of sex-linked genes. Heredity 102:4–15PubMedCrossRefGoogle Scholar
  50. Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 22:1337–1344PubMedCrossRefGoogle Scholar
  51. Sattler GD, Braun MJ (2000) Morphometric variation as an indicator of genetic interactions between Black-capped and Carolina chickadees at a contact zone in the Appalachian Mountains. Auk 117:427–444CrossRefGoogle Scholar
  52. Sætre GP, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, Syvanen AC (2003) Sex chromosome evolution and speciation in Ficedula flycatchers. Proc R Soc Lond B 270:53–59CrossRefGoogle Scholar
  53. Secondi J, Faivre B, Bensch S (2006) Spreading introgression in the wake of a moving contact zone. Mol Ecol 15:2463–2475PubMedCrossRefGoogle Scholar
  54. Servedio MR, Sætre G-P (2003) Speciation as a positive feedback loop between postzygotic and prezygotic barriers to gene flow. Proc R Soc Lond B 270:1473–1479CrossRefGoogle Scholar
  55. Snell RR (1991) Interspecific allozyme differentiation among north Atlantic white-headed larid gulls. Auk 108:319–328Google Scholar
  56. Spear LB (1987) Hybridization of glaucous and herring gulls at the Mackenzie Delta, Canada. Auk 104:123–125CrossRefGoogle Scholar
  57. Stegmann B (1934) Ueber die Formen der großen Möwen (“subgenus Larus”) und ihre gegenseitigen Beziehungen. J Orn 82:340–380CrossRefGoogle Scholar
  58. Sternkopf V, Liebers-Helbig D, Ritz M, Helbig AJ, de Knijff P (in preparation) Introgressive hybridization and non-concordant evolutionary history of mitochondrial and nuclear DNA in the herring gull complex.Google Scholar
  59. Sternkopf V, Liebers-Helbig D, Helbig AJ, de Knijff P (in preparation) Phylogeny of the genus Larus revised.Google Scholar
  60. Tegelström H (1987) Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionymys rutilus) to the bank vole (Clethrionymys glareolus). J Mol Evol 24:218–227PubMedCrossRefGoogle Scholar
  61. Templeton AR (1998) Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397PubMedCrossRefGoogle Scholar
  62. Thulin CG, Jaarola M, Tegelström H (1997) The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol Ecol 6:463–467PubMedCrossRefGoogle Scholar
  63. Tinbergen N (1953) The herring gull’s world. Collins, LondonGoogle Scholar
  64. Vallender R, Robertson RJ, Friesen VL, Lovette IJ (2007) Complex hybridization dynamics between golden-winged and blue-winged warblers (Vermivora chrysoptera and Vermivora pinus) revealed by AFLP, microsatellite, intron an mtDNA markers. Mol Ecol 16:2017–2029PubMedCrossRefGoogle Scholar
  65. van Swelm ND (1998) Status of yellow-legged gull Larus michahellis as a breeding bird in the Netherlands. Sula 12:199–202Google Scholar
  66. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647PubMedCrossRefGoogle Scholar
  67. Vigfúsdottir F, Pálsson S, Ingolfsson A (2008) Hybridization of glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus) in Iceland: mitochondrial and microsatellite data. Philos Trans R Soc Lond B 363:2851–2860CrossRefGoogle Scholar
  68. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  69. Wake DB (1997) Incipient species formation in salamanders of the Ensatina complex. Proc Natl Acad Sci USA 94:7761–7767PubMedCrossRefGoogle Scholar
  70. Wang Z, Baker AJ, Hill GE, Edwards SV (2003) Reconciling actual and inferred population histories in the House Finch (Capodacus mexicanus) by AFLP analysis. Evolution 57:2852–2864PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dorit Liebers-Helbig
    • 1
  • Viviane Sternkopf
    • 1
  • Andreas J. Helbig
  • Peter de Knijff
    • 2
  1. 1.Deutsches MeeresmuseumStralsundGermany
  2. 2.Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations