Speciation via Differential Host–Plant Use in the Tephritid Fly Tephritis conura

  • Jes JohannesenEmail author
  • Thorsten Diegisser
  • Alfred Seitz


The close association between phytophagous insects and host plants and the possibility for specialization on new plants make phytophagous insects prime candidates for sympatric speciation via host-race evolution. In this chapter, we summarize results addressing host-race evolution in the tephritid fly Tephritis conura (Tephritidae) infesting Cirsium heterophyllum and C. oleraceum (Asteraceae). Host plant distributions in allopatry, sympatry and parapatry, and different infestation patterns enabled us to test geographic speciation scenarios, investigate adaptations, and address the importance of plant population history for diversification of T. conura.


Host Plant Gene Flow Hybrid Plant Sympatric Speciation Flower Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study greatly profited from investigations by Christian Tritsch, Christian Lampei, Karoline Köhler and Ariane Grastat. We thank Dagmar Klebsch and Susanne Maus for practical work in the laboratory. Harald Schneider and an anonymous reviewer for made helpful suggestions on an earlier MS draft. The study was supported by the Deutsche Forschungsgemeinschaft (DFG Se506/10-1/3 to A.S. and J.J.


  1. Aluja M, Norrbom AL (2000) Fruit flies (Tephritidae): phylogeny and evolution of behaviour. CRC Press, Boca RatonGoogle Scholar
  2. Becerra JX, Venable DL (1999) Macroevolution of insect-plant associations: the relevance of host biogrography to host affiliation. Proc Natl Acad Sci USA 96:12626–12631PubMedCrossRefGoogle Scholar
  3. Berlocher SH (1998) Can sympatric speciation via host or habitat shift be proven from phylogenetic and biogeographic evidence? In: Howard DJ, Berlocher SH (eds) Endless Forms: Species and Speciation, Oxford University Press, New York, pp 99–113Google Scholar
  4. Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 47:773–815PubMedCrossRefGoogle Scholar
  5. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman and Hall, New YorkGoogle Scholar
  6. Bitner-Mathé BC, Klaczko LB (1999) Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica 105:35–42PubMedCrossRefGoogle Scholar
  7. Blair CP, Abrahamson WG, Jackman JA, Tyrrell L (2005) Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution 59:304–316PubMedGoogle Scholar
  8. Bush GL (1969) Sympatric host-race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251CrossRefGoogle Scholar
  9. Bush GL (1975) Modes of animal speciation. Annu Rev Ecol Syst 6:339–364CrossRefGoogle Scholar
  10. Bush GL, Butlin RK (2004) Sympatric speciation in insects. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation. Cambridge University Press, pp 229–248Google Scholar
  11. Bush GL, Smith JJ (1998) The genetics and ecology of sympatric speciation: a case study. Res Pop Ecol 40:175–187CrossRefGoogle Scholar
  12. Butlin RK (1990) Divergence in emergence time of host-races due to differential gene flow. Heredity 65:47–50PubMedCrossRefGoogle Scholar
  13. Carr DE, Eubanks MD (2002) Inbreeding alters resistance to insect herbivory and host plant quality in Mimulus guttatus (Scrophulariaceae). Evolution 56:22–30PubMedGoogle Scholar
  14. Carroll SP, Dingle H, Klassen SP (1997) Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution 51:1182–1188Google Scholar
  15. Craig,TP, Horner JD, Itami JK (1997) Hybridization studies on the host races of Eurosta solidaginis: Implications for sympatric speciation. Evolution 51:1552–1560Google Scholar
  16. Craig TP, Itami JK, Abrahamson WG, Horner JD (1993) Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47:1696–1710CrossRefGoogle Scholar
  17. Cronin JT, Abrahamson WG (1999) Host-plant genotype and their herbivores influence goldenrod stem galler preference and performance. Oecologia 121:392–404CrossRefGoogle Scholar
  18. Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:362–381CrossRefGoogle Scholar
  19. Coyne JA, Orr HA (1997) “Patterns of speciation in Drosophila” revisited. Evolution 51:295–303CrossRefGoogle Scholar
  20. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  21. Dahlgaard J, Hasson E, Loeschke V (2001) Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation? Evolution 55:738–747PubMedCrossRefGoogle Scholar
  22. Dambroski HR, Feder JL (2007) Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development. J Evol Biol 20:2101–2112PubMedCrossRefGoogle Scholar
  23. Despres L, Loriot S, Gaueul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 11:2337–2347PubMedCrossRefGoogle Scholar
  24. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357PubMedCrossRefGoogle Scholar
  25. Diegisser T, Johannesen J, Lehr C, Seitz A (2004) Genetic and morphological differentiation in Tephritis bardanae (Diptera: Tephritidae): evidence for host-race formation. J Evol Biol 17:83–93PubMedCrossRefGoogle Scholar
  26. Diegisser T (2005) Artbildung via Wirtsrassen bei Tephritis conura (Diptera: Tephritidae). PhD Dissertation, University of Mainz, GermanyGoogle Scholar
  27. Diegisser T, Seitz A, Johannesen J (2006a) Phylogeographic patterns of host-race evolution in Tephritis conura (Diptera: Tephritidae). Mol Ecol 15:681–694PubMedCrossRefGoogle Scholar
  28. Diegisser T, Johannesen J, Seitz A (2006b) The role of geographic setting on the diversification process among Tephritis conura (Tephritidae) host-races. Heredity 96:410–418PubMedCrossRefGoogle Scholar
  29. Diegisser T, Seitz A, Johannesen J (2007) Morphological adaptation in host races of Tephritis conura (Diptera: Tephritidae). Entomol Exp Appl 122:155–164CrossRefGoogle Scholar
  30. Diegisser T, Johannesen J, Seitz A (2008) Performance of Tephritis conura host-races (Diptera: Tephritidae) on a derived host plant (Cirsium oleraceum): implications for the original host shift. J Insect Sci 8:66CrossRefGoogle Scholar
  31. Diegisser T, Tritsch C, Seitz A, Johannesen J (2009) Infestation of the marsh thistle Cirsium palustre by Tephritis conura (Diptera: Tephritidae) in northern Britain – host-range expansion or host shift? Genetica 137:87–97PubMedCrossRefGoogle Scholar
  32. Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29:471–504CrossRefGoogle Scholar
  33. Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B 357:471–492CrossRefGoogle Scholar
  34. Emelianov I, Mallet J, Baltensweiler W (1995) Genetic differentiation in Zeiraphera diniana (Lepidoptera: Tortricidae, the larch budmoth): polymorphism, host races or sibling species? Heredity 75:416–424CrossRefGoogle Scholar
  35. Emelianov I, Dres M, Baltensweiler W, Mallet J (2001) Host-induced assortative mating in host races of the larch budmoth. Evolution 55:2002–2010Google Scholar
  36. Eschenbacher H (1982) Untersuchungen über den Insektenkomplex in den Blütenköpfen der Kohldistel, Cirsium oleraceum L. (Compositae). Diploma thesis, University of Bayreuth, GermanyGoogle Scholar
  37. Feder JL (1995) The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera, Tephritidae). Ecology 76:801–813CrossRefGoogle Scholar
  38. Feder JL, Stolz U, Lewis KM, Perry W, Roethele JB, Rogers A (1997) The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera : Tephritidae). Evolution 51:1862–1876Google Scholar
  39. Feder JL, Berlocher SH, Opp SB (1998) Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D. In: Mopper S, Strauss SY (eds) Genetic structure and local adaptation in natural insect populations. Effects of ecology, life history, and behavior. Chapman and Hall, New York, pp 408–434Google Scholar
  40. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic V, Filchak KE, Rull J, Aluja M (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci USA 100:10314–10319PubMedCrossRefGoogle Scholar
  41. Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459PubMedCrossRefGoogle Scholar
  42. Floate K, Whitman TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141:651–662PubMedCrossRefGoogle Scholar
  43. Fritz RS (1995) Direct and indirect effects of genetic variation on enemy impact. Ecol Entomol 20:18–26CrossRefGoogle Scholar
  44. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  45. Gassmann AJ, Levy A, Tran T, Futuyma DJ (2006) Adaptations of an insect to a novel host plant: a phylogenetic approach. Funct Ecol 20:478–485CrossRefGoogle Scholar
  46. Gillham MC, Claridge MF (1994) A multivariate approach to host-plant associated morphological variation in the polyphagous leafhopper, Alnetoidia-Alneti (Dahlbom). Biol J Linn Soc 53:127–151Google Scholar
  47. Groman JD, Pellmyr O (2002) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236CrossRefGoogle Scholar
  48. Häggström H, Larsson S (1995) Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola. Oecologia 104:308–315CrossRefGoogle Scholar
  49. Hare JD (1990) Ecology and management of the Colorado potato beetle. Annu Rev Entomol 35:81–100CrossRefGoogle Scholar
  50. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967PubMedCrossRefGoogle Scholar
  51. Harrison RG (1991) Molecular changes at speciation. Annu Rev Ecol Syst 22:281–308CrossRefGoogle Scholar
  52. Hegi G (1987) DCCLXXIV Cirsium. In: Wagenitz G (ed) Illustrierte Flora Mitteleuropas, Band 6 Teil IV, Compositae II: Matricaria-Hieracium, 2nd edn. Paul Parey, Berlin-Hamburg, pp 866–916Google Scholar
  53. Harrison RG (1998) Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 19–31Google Scholar
  54. Horner JD, Craig TP, Itami JK (1999) The influence of oviposition phenology on survival in host races of Eurosta solidaginis. Entomol Exp Appl 93:121–129CrossRefGoogle Scholar
  55. Hughes J, Vogler AP (2004) Ecomorphological adaptation of acorn weevils to their oviposition site. Evolution 58:1971–1983PubMedGoogle Scholar
  56. Hull-Sanders HM, Eubanks MD (2005) Plant defense theory provides insight into interactions involving inbred plants and insect herbivores. Ecology 86:897–904CrossRefGoogle Scholar
  57. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversity of plant feeding insects. BMC Evol Biol 6:4PubMedCrossRefGoogle Scholar
  58. Johannesen J, Tritsch C, Seitz A, Diegisser T (2008) Genetic structure of Cirsium palustre (Asteraceae) and its role in host diversification of Tephritis conura (Diptera: Tephritidae). Biol J Linn Soc 95:221–232CrossRefGoogle Scholar
  59. Katakura H, Hosogai T (1994) Performance of hybrid ladybird beetles (Epilachna ssp.) on the host plants of parental species. Entomol Exp Appl 71:81–84CrossRefGoogle Scholar
  60. Kawecki TJ (1996) Sympatric speciation driven by beneficial mutations. Proc R Soc Lond B 263:1515–1520CrossRefGoogle Scholar
  61. Kawecki TJ (1997) Sympatric speciation by habitat specialization driven by deleterious mutations. Evolution 51:1751–1763CrossRefGoogle Scholar
  62. Komma M (1990) Der Pflanzenparasit Tephritis conura und die Wirtsgattung Cirsium. PhD Thesis, University of Bayreuth, GermanyGoogle Scholar
  63. Kondrashov AS, Yampolsky LV, Shabalina SA (1998) On the sympatric origin of species by means of natural selection. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 90–98Google Scholar
  64. Koslow JM, DeAngelis DL (2006) Host mating system and the prevalence of disease in a plant population. Proc R Soc Lond B 273:1825–1831CrossRefGoogle Scholar
  65. Kovac D, Dohm P, Freidberg A, Norrbom AL (2006) Catalog and revised classification of the Gastrozonin (Diptera: Tephritidae: Dacinae). In: Freidberg A (ed) Biotaxonomy of Tephritoidae. Isr J Entomol 35–36:163–196Google Scholar
  66. Larson S, Ekbom B (1995) Oviposition mistakes in herbivorous insects: confusion or a step towards a new host species. Oikos 72:155–160Google Scholar
  67. Leclaire M, Brandl R (1994) Phenotypic plasticity and nutrition in a phytophagous insect - consequences of colonizing a new host. Oecologia 100:379–385CrossRefGoogle Scholar
  68. Lill JT, Marquis RJ (2001) The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia 126:418–428CrossRefGoogle Scholar
  69. Mayr E (1963) Animal Species and Evolution. Belknap Press, Cambridge, MAGoogle Scholar
  70. Mallet J (2001) The speciation revolution. J Evol Biol 14:887–888CrossRefGoogle Scholar
  71. Michel AP, Rull J, Aluja M, Feder JL (2007) The genetic structure of hawthorn-infesting Rhagoletis pomonella populations in Mexico: implications for sympatric host race formation. Mol Ecol 16:2867–2878PubMedCrossRefGoogle Scholar
  72. Norrbom AL (2004) The Diptera site. Fruit fly (Diptera: Tephritidae) classification & diversity, Assessed 17.05.2010
  73. Nuismer SL, Thompson JN (2001) Plant polyploidy and non-uniform effects on insect herbivores. Proc R Soc Lond B 268:1937–1940CrossRefGoogle Scholar
  74. Ohshima I (2008) Host race formation in the leaf-mining moth Acrocercops transecta (Lepidoptera: Gracillariidae). Biol J Linn Soc 93:135–145CrossRefGoogle Scholar
  75. Presgraves DC, Balagopalan L, Abmayr SM, Orr HA (2003) Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–719PubMedCrossRefGoogle Scholar
  76. Pilson D (1999) Plant hybrid zones and insect host range expansion. Ecology 80:407–415CrossRefGoogle Scholar
  77. Rausher MD (1984) Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttata. Evolution 38:582–595CrossRefGoogle Scholar
  78. Rice WR (1984) Disruptive selection of habitat preference and the evolution of reproductive isolation: a simulation study. Evolution 38:1251–1260CrossRefGoogle Scholar
  79. Roitberg BD, Isman MB (1992) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New YorkGoogle Scholar
  80. Romstöck M (1982) Untersuchungen über den Insektenkomplex in den Blütenköpfen von Cirsium heterophyllum (Caedueae). MSc thesis, Bayreuth University, Bayreuth, GermanyGoogle Scholar
  81. Romstöck-Völkl M (1997) Host-race formation in Tephritis conura: determinants from three trophic levels. Ecol Stud 130:21–38CrossRefGoogle Scholar
  82. Romstöck M, Arnold H (1987) Populationsökologie und Wirtswahl bei Tephritis conura Loew-Biotypen (Dipt.: Tephritidae). Zool Anz 219:83–120Google Scholar
  83. Seitz A, Komma M (1984) Genetic polymorphism and its ecological background in Tephritid populations (Diptera: Tephritidae). In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin, pp 143–158CrossRefGoogle Scholar
  84. Schwarz D, McPheron B, Hartl GB, Boller EF, Hoffmeister TS (2003) A second case of genetic host races in Rhagoletis? A population genetic comparison of sympatric host populations in the European cherry fruit fly Rhagoletis cerasi. Entomol Exp Appl 108:11–17CrossRefGoogle Scholar
  85. Sezer M, Butlin RK (1998) The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens). Heredity 80:499–508CrossRefGoogle Scholar
  86. Shirai Y, Morimoto N (1999) A host shift from wild blue cohosh to cultivated potato by the phytophagous ladybird beetle, Epilachna yasutomii (Coleoptera, Coccinellidae). Res Pop Ecol 41:161–167CrossRefGoogle Scholar
  87. Stalker HD, Carson HL (1948) An altitudinal transect of Drosophila robusta Sturtevant. Evolution 2:295–305PubMedCrossRefGoogle Scholar
  88. Stephenson AG, Leyshon B, Travers SE, Hayes CN, Winsor JA (2004) Interrelationships among inbreeding, herbivory, and disease on reproduction in a wild gourd. Ecology 85:3023–3034CrossRefGoogle Scholar
  89. Stireman JO III, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59:2573–2587PubMedCrossRefGoogle Scholar
  90. Stoyenoff JL, Witter JA, Montgomery ME, Chilcote CA (1994) Effects of host switching on gypsy moth (Lymantria dispar (L.)) under field conditions. Oecologia 97:143–157CrossRefGoogle Scholar
  91. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  92. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, ChicagoGoogle Scholar
  93. Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343PubMedCrossRefGoogle Scholar
  94. Via S (1990) Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu Rev Entomol 35:421–446PubMedCrossRefGoogle Scholar
  95. Via S (1991) Specialized host plant performance of pea aphid clones is not altered by experience. Ecology 72:1420–1427Google Scholar
  96. Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53:1446–1457CrossRefGoogle Scholar
  97. Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390PubMedCrossRefGoogle Scholar
  98. Vaupel A, Klinge K, Brändle M, Wissemann V, Tscharntke T, Brandl R (2007) Genetic differentiation between populations of the European rose hip fly Rhagoletis alternate. Biol J Linn Soc 90:619–625CrossRefGoogle Scholar
  99. Wood TK, Guttman SI (1982) Ecological and behavioural basis for reproductive isolation in the sympatric Enchenopa binotata complex. Evolution 36:233–242CrossRefGoogle Scholar
  100. Wood TK, Tilmon KJ, Shantz AB, Harris CK, Pesek J (1999) The role of host-plant fidelity in initiating insect race formation. Evol Ecol Res 1:317–332Google Scholar
  101. Xie XF, Rull J, Michel AP, Velez S, Forbes AA, Lobo NF, Aluja M, Feder JL (2007) Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality. Evolution 61:1091–1105PubMedCrossRefGoogle Scholar
  102. Zwölfer H (1975) Rüsselkäfer und ihre Umwelt – ein Kapitel Ökologie. Stuttg Beitr Naturk 3:19–31Google Scholar
  103. Zwölfer H (1988) Evolutionary and ecological relationships among the insect fauna of thistles. Annu Rev Entomol 33:103–122CrossRefGoogle Scholar
  104. Zwölfer H, Romstöck-Völkl M (1991) Biotypes and the evolution of niches in phytophagous insects on Cardueae hosts. In: Price PW, Lewinsohn TM, Fernandes GW, Woodruff WB (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 487–507Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jes Johannesen
    • 1
    Email author
  • Thorsten Diegisser
    • 1
  • Alfred Seitz
    • 1
  1. 1.Institut für Zoologie, Abteilung ÖkologieUniversität MainzMainzGermany

Personalised recommendations