Affect Listeners: Acquisition of Affective States by Means of Conversational Systems

  • Marcin Skowron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5967)


We present the concept and motivations for the development of Affect Listeners, conversational systems aiming to detect and adapt to affective states of users, and meaningfully respond to users’ utterances both at the content- and affect-related level. In this paper, we describe the system architecture and the initial set of core components and mechanisms applied, and discuss the application and evaluation scenarios of Affect Listener systems.


Name Entity Recognition Evaluation Scenario Natural Language Generation Listener System Textual Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allwood, J.: The Structure of Dialog. In: The Structure of Multimodal Dialogue II, pp. 3–24. Benjamins, Amsterdam (1999)Google Scholar
  2. 2.
    Arafa, Y., et al.: Affective Interactions for Real-time Applications: the SAFIRA Project. KI 18(1), 30 (2004)Google Scholar
  3. 3.
    Bohus, D., Rudnicky, A.: RavenClaw: Dialog Management Using Hierarchical Task, Decomposition and an Expectation Agenda. In: Proc. of the Eurospech 2003, pp. 597–600 (2003)Google Scholar
  4. 4.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)Google Scholar
  5. 5.
    Forsyth, E., Martell, C.: Lexical and Discourse Analysis of Online Chat Dialog. In: Proc. of the First IEEE Int. Conf. on Semantic Computing, pp. 19–26 (2007)Google Scholar
  6. 6.
    Gill, D., Christensen, A., Fincham, F.: Predicting marital satisfaction from behavior: Do all roads really lead to Rome? Personal Relationships 6, 369–387 (1999)CrossRefGoogle Scholar
  7. 7.
    Kappas, A., Pecchinenda, A.: Don’t wait for the monsters to get you: A video game task to manipulate appraisals in real time. Cognition and Emotion 13, 119–124 (1999)CrossRefGoogle Scholar
  8. 8.
    Li, X., Roth, D.: Learning Question Classifiers. In: Proc. of the 19th Int. Conf. on Computational Linguistics, pp. 556–562 (2002)Google Scholar
  9. 9.
    Liu, H., Lieberman, H., Selker, T.: A model of textual affect sensing using real-world knowledge. In: Proceedings Int. Conf. on Intelligent User Interfaces (2003)Google Scholar
  10. 10.
    Mairesse, F., Walker, M., Mehl, M., Moore, R.: Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research 30, 457–500 (2007)zbMATHGoogle Scholar
  11. 11.
    Mann, W., Thompson, S.: Rhetorical structure theory: Rhetorical structure theory: Toward a functional theory of text organization. Text 8(3), 243–281 (1988)Google Scholar
  12. 12.
    McGlashan, S.: Towards multimodal dialogue management. In: Proceedings of Twente Workshop on Language Technology 11, The Netherlands (1996)Google Scholar
  13. 13.
    Mihalcea, R., Liu, H.: A corpus-based approach to finding happiness. In: The AAAI Spring Symposium on Computational Approaches to Weblogs (2006)Google Scholar
  14. 14.
    Neviarouskaya, A., Prendinger, I.M.: Textual Affect Sensing for Social and Expressive Online Communication. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 218–229. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Paiva, A., Prada, R., Picard, R.W.: Affective Computing and Intelligent Interaction. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Pelachaud, C., Poggi, I.: Towards believable interactive embodied agents. In: Fifth Int. Conf. on Autonomous Agents workshop on Multimodal Communication and Context in Embodied Agents (2001)Google Scholar
  17. 17.
    Pennebaker, J.W., Mehl, M.R., Niederhoffer, K.G.: Psychological aspects of natural language use: our words, our selves. Annual Review of Psychology 54, 547–577 (2003)CrossRefGoogle Scholar
  18. 18.
    Picard, R.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  19. 19.
    Prabowo, R., Thelwall, M.: Sentiment Analysis: A Combined Approach. Accepted for publication in Journal of Informetrics (2009)Google Scholar
  20. 20.
    Purandare, A., Litman, D.: Analyzing Dialog Coherence using Transition Patterns in Lexical and Semantic Features (2008)Google Scholar
  21. 21.
    Reeves, B., Nass, C.: The Media Equation. Cambridge University Press, Cambridge (1996)Google Scholar
  22. 22.
    Schank, R.C., Abelson, R.: Scripts, Plans, Goals and Understanding (1977)Google Scholar
  23. 23.
    Schröder, M., Cowie, R.: Developing a consistent view on emotion-oriented computing. In: Machine Learning for Multimodal Interaction, pp. 194–205 (2006)Google Scholar
  24. 24.
    Schröder, M., Cowie, R., Heylen, D., Pantic, M., Pelachaud, C., Schuller, B.: Towards responsive Sensitive Artificial Listeners. In: Fourth International Workshop on Human-Computer Conversation (2008)Google Scholar
  25. 25.
    Shaikh, M.A., Prendinger, H., Ishizuka, M.: Sentiment Assessment of Text by Analyzing Linguistic Features and Contextual Valence Assignment. Appl. Artificial Intelligence 22(6) (2008)Google Scholar
  26. 26.
    Skowron, M.: A Web Based Approach to Factoid and Commonsense Knowledge Retrieval, Doctoral Dissertation, Hokkaido University (2005)Google Scholar
  27. 27.
    Skowron, M., Araki, K.: Effectiveness of Combined Features for Machine Learning Based Question Classification. Special Issue on Question Answering and Text Summarization, Journal of Natural Language Processing 6, 63–83 (2005)CrossRefGoogle Scholar
  28. 28.
    Skowron, M., Irran, J., Krenn, B.: Computational Framework for and the Realization of Cognitive Agents Providing Intelligent Assistance Capabilities. In: The 6th Int. Cognitive Robotics Workshop (ECAI 2008), pp. 88–96 (2008)Google Scholar
  29. 29.
    Stephan, W.G., Stephan, C.W.: An integrated threat theory of prejudice. In: Oskamp, S. (ed.) Reducing prejudice and discrimination, pp. 225–246. Erlbaum, Hillsdale (2000)Google Scholar
  30. 30.
    Tatai, G., Laufer, L.: Extraction of Affective Components from Texts and Their Use in Natural Language Dialogue Systems. Acta Cybernetica 16, 625–642 (2004)Google Scholar
  31. 31.
    Thelwall, M., Buckley, K., Cai, D., Paltoglou, G.: CyberEmotions project: Internal Report, September 2009, University of Wolverhampton (2009)Google Scholar
  32. 32.
    Wallace, R.: Don’t Read Me - A.L.I.C.E. and AIML Documentation (2001),
  33. 33.
    Weischedel, R., Brunstein, A.B.: Pronoun Coreference and Entity Type Corpus, Linguistic Data Consortium, Philadelphia (2005)Google Scholar
  34. 34.
    Williams, J.D., Poupart, P., Young, S.: Partially Observable Markov Decision Processes with Continuous Observations for Dialogue Management. In: Proceedings of the 6th SigDial Workshop on Discourse and Dialogue (2005)Google Scholar
  35. 35.
    Valitutti, A., Strapparava, C., Stock, O.: Developing Affective Lexical Resources. Psychology Journal 2(1), 61–83 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcin Skowron
    • 1
  1. 1.Austrian Research Institute for Artificial IntelligenceViennaAustria

Personalised recommendations