Stereoscopic Cinema

  • Frédéric DevernayEmail author
  • Paul Beardsley
Part of the Geometry and Computing book series (GC, volume 5)


Stereoscopic cinema has seen a surge of activity in recent years, and for the first time all of the major Hollywood studios released 3-D movies in 2009. This is happening alongside the adoption of 3-D technology for sports broadcasting, and the arrival of 3-D TVs for the home. Two previous attempts to introduce 3-D cinema in the 1950s and the 1980s failed because the contemporary technology was immature and resulted in viewer discomfort. But current technologies – such as accurately-adjustable 3-D camera rigs with onboard computers to automatically inform a camera operator of inappropriate stereoscopic shots, digital processing for post-shooting rectification of the 3-D imagery, digital projectors for accurate positioning of the two stereo projections on the cinema screen, and polarized silver screens to reduce cross-talk between the viewers left- and right-eyes – mean that the viewer experience is at a much higher level of quality than in the past. Even so, creation of stereoscopic cinema is an open, active research area, and there are many challenges from acquisition to post-production to automatic adaptation for different-sized display. This chapter describes the current state-of-the-art in stereoscopic cinema, and directions of future work.


Stereoscopic Image View Synthesis Stereoscopic Display Horizontal Disparity Visual Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. ISPRS J. Photogramm. Remote Sens. 59(5), 278–288 (2005). doi:10.1016/j.isprsjprs.2005.03.001CrossRefGoogle Scholar
  2. 2.
    Akeley, K., Watt, S.J., Girshick, A.R., Banks, M.S.: A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23(3), 804–813 (2004). doi:10.1145/1015706.1015804CrossRefGoogle Scholar
  3. 3.
    Allison, R.S.: The camera convergence problem revisited. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 167–178 (2004). doi:10.1117/12.526278.
  4. 4.
    Allison, R.S.: Analysis of the influence of vertical disparities arising in toed-in stereoscopic cameras. J. Imaging Sci. Technol. 51(4), 317–327 (2007).
  5. 5.
    Allison, R.S., Rogers, B.J., Bradshaw, M.F.: Geometric and induced effects in binocular stereopsis and motion parallax. Vision Res. 43, 1879–1893 (2003). doi:10.1016/S0042-6989(03)00298-0. Google Scholar
  6. 6.
    Barreto, J.P., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: Proc. ICCV (2005). doi:10.1109/ICCV.2005.103.
  7. 7.
    Bertalmio, M., Fort, P., Sanchez-Crespo, D.: Real-time, accurate depth of field using anisotropic diffusion and programmable graphics cards. In: Proc. 2nd Intl. Symp. on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 767–773 (2004). doi:10.1109/TDPVT.2004.1335393Google Scholar
  8. 8.
    Blake, A., Bülthoff, H.: Does the brain know the physics of specular reflection? Nature 343(6254), 165–168 (1990). doi:10.1038/343165a0CrossRefGoogle Scholar
  9. 9.
    Blake, A., Bulthoff, H.: Shape from specularities: computation and psychophysics. Philos Trans R Soc London B Biol Sci 331(1260), 237–252 (1991). doi:10.1098/rstb.1991.0012CrossRefGoogle Scholar
  10. 10.
    Bleyer, M., Gelautz, M., Rother, C., Rhemann, C.: A stereo approach that handles the matting problem via image warping. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2009). doi:10.1109/CVPRW.2009.5206656.
  11. 11.
    Bordwell, D.: Coraline, cornered (2009). Accessed 10 Jun 2009, archived at
  12. 12.
    Campbell, F.W.: The depth of field of the human eye. J. Mod. Opt. 4(4), 157–164 (1957). doi:10.1080/713826091CrossRefGoogle Scholar
  13. 13.
    Chabert, C.F., Einarsson, P., Jones, A., Lamond, B., Ma, W.C., Sylwan, S., Hawkins, T., Debevec, P.: Relighting human locomotion with flowed reflectance fields. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, p. 76. ACM, New York, NY, USA (2006). doi:10.1145/1179849.1179944.
  14. 14.
    Cheng, C.M., Lai, S.H., Su, S.H.: Self image rectification for uncalibrated stereo video with varying camera motions and zooming effects. In: Proc. IAPR Conference on Machine Vision Applications (MVA). Yokohama, Japan (2009).
  15. 15.
    Criminisi, A., Blake, A., Rother, C., Shotton, J., Torr, P.H.: Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming. Int. J. Comput. Vis. 71(1), 89–110 (2007). doi:10.1007/s11263-006-8525-1CrossRefGoogle Scholar
  16. 16.
    Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J., Hawkins, T.: A lighting reproduction approach to live-action compositing. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2002) 21(3), 547–556 (2002). doi:
  17. 17.
    Emoto, M., Niida, T., Okano, F.: Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Disp. Technol. 1(2), 328–340 (2005). doi:10.1109/JDT.2005.858938. Google Scholar
  18. 18.
    Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 125–132 (2001). doi:10.1109/CVPR.2001.990465.
  19. 19.
    Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, New York (2003)Google Scholar
  20. 20.
    Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12, 16–22 (2000)CrossRefGoogle Scholar
  21. 21.
    Gorley, P., Holliman, N.: Stereoscopic image quality metrics and compression. In: Woods, A.J., Holliman, N.S., Merritt, J.O. (eds.) Proc. SPIE Stereoscopic Displays and Applications XIX, vol. 6803, p. 680305. SPIE (2008). doi:10.1117/12.763530.
  22. 22.
    Gosser, H.M.: Selected Attempts at Stereoscopic Moving Pictures and Their Relationship to the Development of Motion Picture Technology, 1852–1903. Ayer, Salem, NH (1977)Google Scholar
  23. 23.
    Hartley, R.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35, 115–127 (1999)CrossRefGoogle Scholar
  24. 24.
    Hartley, R., Zisserman, A.: Multiple-View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  25. 25.
    Hasinoff, S.W., Kang, S.B., Szeliski, R.: Boundary matting for view synthesis. Comput. Vis. Image Underst. 103(1), 22–32 (2006). doi:10.1016/j.cviu.2006.02.005.
  26. 26.
    Held, R.T., Cooper, E.A., O’Brien, J.F., Banks, M.S.: Using blur to affect perceived distance and size. In: ACM Trans. Graph. 29(2), 1–16. ACM, New York, USA (2010). 0730–0301. Scholar
  27. 27.
    Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 1–30 (2008). doi:10.1167/8.3.33CrossRefGoogle Scholar
  28. 28.
    Hummel, R.: 3-D cinematography. American Cinematographer Manual, pp. 52–63. American Society of Cinematographers, Hollywood, CA (2008)Google Scholar
  29. 29.
    Jones, G.R., Holliman, N.S., Lee, D.: Stereo images with comfortable perceived depth. US Patent 6798406 (2004).
  30. 30.
    Kakimoto, M., Tatsukawa, T., Mukai, Y., Nishita, T.: Interactive simulation of the human eye depth of field and its correction by spectacle lenses. Comput. Graph. Forum 26(3), 627–636 (2007). doi:10.1111/j.1467-8659.2007.01086.x.
  31. 31.
    Kilner, J., Starck, J., Hilton, A.: A comparative study of free-viewpoint video techniques for sports events. In: Proc. 3rd European Conference on Visual Media Production, pp. 87–96. London, UK (2006).
  32. 32.
    Kooi, F.L., Toet, A.: Visual comfort of binocular and 3D displays. Displays 25(2–3), 99–108 (2004). doi:10.1016/j.displa.2004.07.004CrossRefGoogle Scholar
  33. 33.
    Kozachik, P.: 2 worlds in 3 dimensions. American Cinematographer 90(2), 26 (2009)Google Scholar
  34. 34.
    Lambooij, M.T.M., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort in stereoscopic displays: a review. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XIV, vol. 6490 (2007). doi:10.1117/12.705527Google Scholar
  35. 35.
    Lin, H.Y., Gu, K.D.: Photo-realistic depth-of-field effects synthesis based on real camera parameters. In: Advances in Visual Computing (ISVC 2007), Lecture Notes in Computer Science, vol. 4841, pp. 298–309. Springer, Berlin (2007). doi:10.1007/978-3-540-76858-6_30Google Scholar
  36. 36.
    Lipton, L.: Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold, New York (1982)Google Scholar
  37. 37.
    Lipton, L.: The stereoscopic cinema: from film to digital projection. SMPTE J. 586–593 (2001)Google Scholar
  38. 38.
    Loop, C., Zhang, Z.: Computing rectifying homographies for stereo vision. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. –131 Vol. 1 (1999). doi:10.1109/CVPR.1999.786928.
  39. 39.
    Marcos, S., Moreno, E., Navarro, R.: The depth-of-field of the human eye from objective and subjective measurements. Vision Res. 39(12), 2039–2049 (1999). doi:10.1016/S0042-6989(98)00317-4CrossRefGoogle Scholar
  40. 40.
    Masaoka, K., Hanazato, A., Emoto, M., Yamanoue, H., Nojiri, Y., Okano, F.: Spatial distortion prediction system for stereoscopic images. J. Electron. Imaging 15(1) (2006). doi:10.1117/1.2181178. Google Scholar
  41. 41.
    Mendiburu, B.: 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal, Oxford (2009)Google Scholar
  42. 42.
    Micusik, B., Pajdla, T.: Estimation of omnidirectional camera model from epipolar geometry. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 485–490 (2003). doi:10.1109/CVPR.2003.1211393.
  43. 43.
    Ogle, K.N.: Induced size effect: I. A new phenomenon in binocular space perception associated with the relative sizes of the images of the two eyes. Am. Med. Assoc. Arch. Ophthalmol. 20, 604–623 (1938). Google Scholar
  44. 44.
    Ogle, K.N.: Researches in Binocular Vision. Hafner, New York (1964)Google Scholar
  45. 45.
    Park, J.I., Um, G.M., Ahn, C., Ahn, C.: Virtual control of optical axis of the 3DTV camera for reducing visual fatigue in stereoscopic 3DTV. ETRI J. 26(6), 597–604 (2004)CrossRefGoogle Scholar
  46. 46.
    Pastoor, S.: Human factors of 3DTV: an overview of current research at Heinrich-Hertz-Institut Berlin. In: IEE Colloquiumon Stereoscopic Television, pp. 11/1–11/4. London (1992).
  47. 47.
    Read, J.C.A., Cumming, B.G.: Does depth perception require vertical-disparity detectors? J. Vis. 6(12), 1323–1355 (2006). doi:10.1167/6.12.1. Google Scholar
  48. 48.
    Rogers, B.J., Bradshaw, M.F.: Vertical disparities, differential perspective and binocular stereopsis. Nature 361, 253–255 (1993). doi:10.1038/361253a0.
  49. 49.
    Rogmans, S., Lu, J., Bekaert, P., Lafruit, G.: Real-time stereo-based view synthesis algorithms: a unified framework and evaluation on commodity gpus. Signal Process. Image Commun. 24(1–2), 49–64 (2009). doi:10.1016/j.image.2008.10.005. Special issue on advances in three-dimensional television and video
  50. 50.
    Seuntiens, P., Meesters, L., Ijsselsteijn, W.: Perceived quality of compressed stereoscopic images: effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans. Appl. Percept. 3(2), 95–109 (2009). doi:10.1145/1141897.1141899CrossRefGoogle Scholar
  51. 51.
    Sexton, I., Surman, P.: Stereoscopic and autostereoscopic display systems. IEEE Signal Process. Mag. 16(3), 85–99 (1999). doi:10.1109/79.768575CrossRefGoogle Scholar
  52. 52.
    Sizintsev, M., Wildes, R.P.: Coarse-to-fine stereo vision with accurate 3D boundaries. Image Vis. Comput. 28(3), 352 – 366 (2010). doi:10.1016/j.imavis.2009.06.008.
  53. 53.
    Smith, C., Benton, S.: reviews of Foundations of the stereoscopic cinema by Lenny Lipton. Opt. Eng. 22(2) (1983).
  54. 54.
    Smolic, A., Kimata, H., Vetro, A.: Development of MPEG standards for 3D and free viewpoint video. Tech. Rep. TR2005-116, MERL (2005).
  55. 55.
    Speranza, F., Stelmach, L.B., Tam, W.J., Glabb, R.: Visual comfort and apparent depth in 3D systems: effects of camera convergence distance. In: Proc. SPIE Three-Dimensional TV, Video and Display, vol. 4864, pp. 146–156. SPIE (2002). doi:10.1117/12.454900Google Scholar
  56. 56.
    Spottiswoode, R., Spottiswoode, N.L., Smith, C.: Basic principles of the three-dimensional film. SMPTE J. 59, 249–286 (1952). Google Scholar
  57. 57.
    Steele, R.M., Jaynes, C.: Overconstrained linear estimation of radial distortion and multi-view geometry. In: Proc. ECCV (2006). doi:10.1007/11744023_20Google Scholar
  58. 58.
    Stelmach, L., Tam, W., Meegan, D., Vincent, A., Corriveau, P.: Human perception of mismatched stereoscopic 3D inputs. In: International Conference on Image Processing (ICIP), vol. 1, pp. 5–8 (2000). doi:10.1109/ICIP.2000.900878Google Scholar
  59. 59.
    Stelmach, L.B., Tam, W.J., Speranza, F., Renaud, R., Martin, T.: Improving the visual comfort of stereoscopic images. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems X, vol. 5006, pp. 269–282 (2003). doi:10.1117/12.474093Google Scholar
  60. 60.
    The Stereographics Developer’s Handbook – Background on Creating Images for CrystalEyes®; and SimulEyes®;. (1997).
  61. 61.
    Stevenson, S.B., Schor, C.M.: Human stereo matching is not restricted to epipolar lines. Vision Res. 37(19), 2717–2723 (1997). doi:10.1016/S0042-6989(97)00097-7CrossRefGoogle Scholar
  62. 62.
    Sun, G., Holliman, N.: Evaluating methods for controlling depth perception in stereoscopic cinematography. In: Proc. SPIE Stereoscopic Displays and Applications XX, vol. 7237 (2009). doi:10.1117/12.807136.
  63. 63.
    Taguchi, Y., Wilburn, B., Zitnick, C.: Stereo reconstruction with mixed pixels using adaptive over-segmentation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2720–2727 (2008). doi:10.1109/CVPR.2008.4587691.
  64. 64.
    Todd, J.T.: The visual perception of 3D shape. Trends Cogn. Sci. 8(3), 115–121 (2004). doi:10.1016/j.tics.2004.01.006CrossRefGoogle Scholar
  65. 65.
    Todd, J.T., Norman, J.F.: The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept. Psychophys. 65(1), 31–47 (2003). Google Scholar
  66. 66.
    Ukai, K., Howarth, P.A.: Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations. Displays 29(2), 106–116 (2007). doi:10.1016/j.displa.2007.09.004CrossRefGoogle Scholar
  67. 67.
    Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: joint color and depth completion from stereo images. In: CVPR 2008 – IEEE Computer Socitey conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). doi:10.1109/CVPR.2008.4587704Google Scholar
  68. 68.
    Wann, J.P., Mon-Williams, M.: Health issues with virtual reality displays: what we do know and what we don’t. ACM SIGGRAPH Comput. Graph. 31(2), 53–57 (1997)CrossRefGoogle Scholar
  69. 69.
    Wann, J.P., Rushton, S., Mon-Williams, M.: Natural problems for stereoscopic depth perception in virtual environments. Vision Res. 35(19), 2731–2736 (1995). doi:10.1016/0042-6989(95)00018-UCrossRefGoogle Scholar
  70. 70.
    Watt, S.J., Akeley, K., Ernst, M.O., Banks, M.S.: Focus cues affect perceived depth. J. Vis. 5(10), 834–862 (2005). doi:10.1167/5.10.7. CrossRefGoogle Scholar
  71. 71.
    Woodford, O., Reid, I.D., Torr, P.H.S., Fitzgibbon, A.W.: On new view synthesis using multiview stereo. In: Proceedings of the 18th British Machine Vision Conference, vol. 2, pp. 1120–1129. Warwick (2007).
  72. 72.
    Woods, A., Docherty, T., Koch, R.: Image distortions in stereoscopic video systems. In: Proc. SPIE Stereoscopic Displays and Applications IV, vol. 1915, pp. 36–48. San Jose, CA (1993). doi:10.1117/12.157041.
  73. 73.
    Wu, H.H.P., Chen, C.C.: Scene reconstruction pose estimation and tracking. In: Projective Rectification with Minimal Geometric Distortion, chap. 13, pp. 221–242. I-Tech Education and Publishing, Vienna (2007).
  74. 74.
    Xiong, W., Chung, H., Jia, J.: Fractional stereo matching using expectation-maximization. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 428–443 (2009). doi:10.1109/TPAMI.2008.98. Google Scholar
  75. 75.
    Xiong, W., Jia, J.: Stereo matching on objects with fractional boundary. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007). doi:10.1109/CVPR.2007.383194.
  76. 76.
    Yamanoue, H., Okui, M., Okano, F.: Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006). doi:10.1109/TCSVT.2006.875213CrossRefGoogle Scholar
  77. 77.
    Yano, S., Emoto, M., Mitsuhashi, T.: Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25, 141–150 (2004). doi:10.1016/j.displa.2004.09.002CrossRefGoogle Scholar
  78. 78.
    Yeh, Y.Y., Silverstein, L.D.: Limits of fusion and depth judgment in stereoscopic color displays. Hum. Factors 32(1), 45–60 (1990)Google Scholar
  79. 79.
    Zhou, J., Li, B.: Rectification with intersecting optical axes for stereoscopic visualization. Proc. ICPR 2, 17–20 (2006). doi:10.1109/ ICPR.2006.986Google Scholar
  80. 80.
    Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view interpolation using a layered representation. In: Proc. ACM SIGGRAPH, vol. 23, pp. 600–608. ACM, New York, NY, USA (2004). doi:10.1145/1015706.1015766.
  81. 81.
    Zitnick, C.L., Szeliski, R., Kang, S.B., Uyttendaele, M.T., Winder, S.: System and process for generating a two-layer, 3D representation of a scene. US Patent 7015926 (2006).
  82. 82.
    Zone, R.: 3-D fimmakers : Conversations with Creators of Stereoscopic Motion Pictures. The Scarecrow Fimmakers Series, No. 119. Scarecrow, Lanham, MD (2005)Google Scholar
  83. 83.
    Zone, R.: Stereoscopic Cinema and the Origins of 3-D Film, 1838–1952. University Press of Kentucky, Lexington, KY (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.INRIA Grenoble – Rhóne-AlpesMontbonnot Saint MartinFrance
  2. 2.Disney ResearchZürichSwitzerland

Personalised recommendations