In this paper we present a smart card implementation of the quantum computer resistant McEliece Public Key Cryptosystem (PKC) on an Infineon SLE76 chip. We describe the main features of the implementation which focuses on performance optimization. We give the resource demands and timings for two sets of security parameters, the higher one being in the secure domain. The timings suggest the usability of the implementation for certain real world applications.


Public key encryption scheme code-based cryptography post quantum cryptography smart card implementation 


  1. 1.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  4. 4.
    ElGamal, T.: A Public Key Cryptosystem and A Signature Based on Discrete Logarithms. IEEE Transactions on Information Theory (1985)Google Scholar
  5. 5.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings, 35th Annual Symposium on Foundation of Computer Science (1994)Google Scholar
  6. 6.
    Shor, P.W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Technical Report quant-ph/0301141, arXiv (2006)Google Scholar
  8. 8.
    Merkle, R.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Buchmann, J., Garcia, L., Dahmen, E., Doering, M., Klintsevich, E.: CMSS-An Improved Merkle Signature Scheme. In: 7th International Conference on Cryptology in India-Indocrypt, vol. 6, pp. 349–363 (2006)Google Scholar
  10. 10.
    McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN progress report 42–44, 114–116 (1978)Google Scholar
  11. 11.
    Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems - conversions for McEliece PKC. In: Practice and Theory in Public Key Cryptography - PKC ’01 Proceedings (2001)Google Scholar
  12. 12.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-Holland, Amsterdam (1997)zbMATHGoogle Scholar
  13. 13.
    Goppa, V.D.: A new class of linear correcting codes. Problems of Information Transmission 6, 207–212 (1970)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996), CrossRefzbMATHGoogle Scholar
  15. 15.
    Engelbert, D., Overbeck, R., Schmidt, A.: A Summary of McEliece-Type Cryptosystems and their Security. Journal of Mathematical Cryptology (2007)Google Scholar
  16. 16.
    Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to primitive narrow-sense BCH-codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info. Theory 21, 203–207 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Overbeck, R.: An Analysis of Side Channels in the McEliece PKC (2008),
  20. 20.
  21. 21.
    Biswas, B., Sendrier, N.: HyMES - Hybrid McEliece System,
  22. 22.
    Biswas, B., Sendrier, N.: McEliece cryptosystem in real life: theory and practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Döring, M.: On the Theory and Practice of Quantum-Immune Cryptography. PHD-Thesis (2008),
  24. 24.
    The FlexiProvider group at Technische Universität Darmstadt: FlexiProvider, an open source Java Cryptographic Service Provider,

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Falko Strenzke
    • 1
    • 2
  1. 1.FlexSecure GmbHGermany
  2. 2.Cryptography and Computeralgebra, Department of Computer ScienceTechnische Universität DarmstadtGermany

Personalised recommendations