The Correlation Power Analysis (CPA) is probably the most used side-channel attack because it seems to fit the power model of most standard CMOS devices and is very efficiently computed. However, the Pearson correlation coefficient used in the CPA measures only linear statistical dependences where the Mutual Information (MI) takes into account both linear and nonlinear dependences. Even if there can be simultaneously large correlation coefficients quantified by the correlation coefficient and weak dependences quantified by the MI, we can expect to get a more profound understanding about interactions from an MI Analysis (MIA). We study methods that improve the non-parametric Probability Density Functions (PDF) in the estimation of the entropies and, in particular, the use of B-spline basis functions as pdf estimators. Our results indicate an improvement of two fold in the number of required samples compared to a classic MI estimation. The B-spline smoothing technique can also be applied to the rencently introduced Cramér-von-Mises test.


  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 135–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative evaluation of rank correlation based DPA on an AES prototype chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis - a generic side-channel distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Veyrat-Charvillon, N., Standaert, F.: Mutual information analysis: How, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators. Physical Review E 52(3), 2318–2321 (1995)CrossRefGoogle Scholar
  7. 7.
    Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Prouff, E., Rivain, M.: Theorical and practical aspects of mutual information based side channel analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Deboor, C.: A Practical Guide to Splines. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  10. 10.
    Daub, C., Steuer, R., Selbig, J., Kloska, S.: Estimating mutual information using B-spline functions - an improved similarity measure for analysing gene expression data. BMC Bioinformatics 5, 118 (2004)CrossRefGoogle Scholar
  11. 11.
    Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs comparison side-channel distinguishers: An empirical evaluation of statistical tests for univariate side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    VLSI research group and TELECOM ParisTech: (The DPA contest 2008/2009), http://www.dpacontest.org
  13. 13.
  14. 14.
    Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29, 526–538 (1990)CrossRefGoogle Scholar
  15. 15.
    Van Hulle, M.: Multivariate edgeworth-based entropy estimation. In: Machine Learning for Signal Processing, pp. 311–316 (2005)Google Scholar
  16. 16.
    Vannucci, M.: Nonparametric density estimation using wavelets. ISDS, Duke University, Tech. Rep. DP95-26 (September 1995), http://www.isds.duke.edu
  17. 17.
    Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating mutual information. Physical Review E 69, 66138 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Alexandre Venelli
    • 1
    • 2
  1. 1.IML – ERISCSUniversité de la MéditerranéeMarseille Cedex 09France
  2. 2.ATMEL Secure Microcontroller Solutions, Zone IndustrielleRoussetFrance

Personalised recommendations