Advertisement

Male-Killing Wolbachia in the Butterfly Hypolimnas bolina

  • Anne Duplouy
  • Scott L. O’Neill
Chapter

Abstract

Maternally inherited insect symbionts often manipulate host reproduction for their own benefit. Symbionts are transmitted to the next host generation through the female hosts, and as such males represent dead ends for transmission. Natural selection therefore favors symbiont-induced phenotypes that provide a reproductive advantage to infected females, regardless of possible negative selective effects on males. Male-killing (MK) is one such phenotype, in which symbionts kill the male progeny of infected females. Compared with other symbiont-associated reproductive phenotypes, MK is relatively unexplored mechanistically as well as ecologically. A male-killing Wolbachia bacterium strain named wBol1 has been described in the tropical butterfly Hypolimnas bolina. By reviewing the different features of this association it is possible to summarize what is already known about the biology and evolution of MK symbionts, as well as highlight the current gaps in our understanding of this striking reproductive phenotype.

Keywords

Host Population Cytoplasmic Incompatibility Wolbachia Strain Infected Female Dosage Compensation Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Dr. I. Iturbe-Ormaetxe, Dr. M. Woolfit and Dr. P. Cook for very constructive comments on the manuscript. We are grateful to the Australian Research Council (DP0772992) and to The University of Queensland (UQCS and UQIRTA) for provision of the funds.

References

  1. Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing for Wolbachia. Appl Environ Microbiol 72(11):7098–7110PubMedCrossRefGoogle Scholar
  2. Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L (1994) Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci 257:43–48PubMedCrossRefGoogle Scholar
  3. Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413PubMedCrossRefGoogle Scholar
  4. Beckage NE, Tan FF, Schleifer KW, Lane RD, Cherubin LL (1994) Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 26:165–195CrossRefGoogle Scholar
  5. Bourtzis K, Miller TA (eds) (2003) Insect symbiosis. CRC Press, New York, NYGoogle Scholar
  6. Bourtzis K, Miller TA (eds) (2006) Insect symbiosis, vol 2. CRC Press, New York, NYGoogle Scholar
  7. Braig HR, Guzman H, Tesh RB, O’Neill SL (1994) Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367:453–455PubMedCrossRefGoogle Scholar
  8. Brelsfoard CL, StClair W, Dobson SL (2009) Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors 2:38PubMedCrossRefGoogle Scholar
  9. Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill CL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:6CrossRefGoogle Scholar
  10. Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, Popov VL, Dumler JS (2000) ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 68(9):5277–5283PubMedCrossRefGoogle Scholar
  11. Charlat S, Hornett EA, Dyson EA, Ho PPY, Thi-Loc N, Schilthuizen M, Davies N, Roderick GK, Hurst GDD (2005) Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Mol Ecol 14:3525–3530PubMedCrossRefGoogle Scholar
  12. Charlat S, Engelstadter J, Dyson E, Hornett E, Duplouy A, Tortosa P, Davies N, Roderick G, Wedell N, Hurst G (2006) Competing selfish genetic elements in the butterfly Hypolimnas bolina. Curr Biol 16:2453–2458PubMedCrossRefGoogle Scholar
  13. Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, Wedell N, Hurst GDD (2007a) Extraordinary flux in sex ratio. Science 317:214PubMedCrossRefGoogle Scholar
  14. Charlat S, Reuter M, Dyson EA, Hornett EA, Duplouy A, Davies N, Roderick GK, Wedell N, Hurst GDD (2007b) Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol 17:273–277PubMedCrossRefGoogle Scholar
  15. Charlat S, Davies N, Roderick GK, Hurst GDD (2007c) Disrupting the timing of Wolbachia-induced male-killing. Biol Lett 3:154–156PubMedCrossRefGoogle Scholar
  16. Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GDD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9:64PubMedCrossRefGoogle Scholar
  17. Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323CrossRefGoogle Scholar
  18. Christensen B (2004) Tracking of migrant blue moon butterfly, Hypolimnas bolina nerina, using web-based software. Weta 28:47–48Google Scholar
  19. Clarke C, Sheppard PM (1975) The genetics of the mimetic butterfly Hypolimnas bolina (L.). Philos Trans R Soc Lond B Biol Sci 272(917):229–265PubMedCrossRefGoogle Scholar
  20. Clarke C, Sheppard P, Scali V (1975) All-female broods in the butterfly Hypolimnas bolina (L.). Proc Biol Sci 189:29–37CrossRefGoogle Scholar
  21. Clarke SC, Jonhson G, Jonson B (1983) All-female broods in Hypolimnas bolina (L.). A re-survey of West Fiji after 60 years. Biol J Linn Soc 19:221–235CrossRefGoogle Scholar
  22. Common IFB, Waterhouse DF (1972) Butterflies of Australia. Angus and Robertson, SydneyGoogle Scholar
  23. Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93:78–84PubMedCrossRefGoogle Scholar
  24. Counce SJ, Poulson DF (1962) Developmental effects of the sex-ratio agent in embryos of Drosophila willistoni. J Exp Zool 151:17–31PubMedCrossRefGoogle Scholar
  25. Covacin C, Barker SC (2007) Supergroup F Wolbachia bacteria parasite lice (Insecta: Phthiraptera). Parasitol Res 100:479–485PubMedCrossRefGoogle Scholar
  26. Duplouy A, Hurst GDD, O’Neill SL, Charlat S (2009) Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J Evol Biol. Doi:10.1111/j.1420-9101.2009.01891.xPubMedGoogle Scholar
  27. Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, Fort P, Weill M (2007) Variability and expression of ankyrin domain genes in Wolbachia infecting the mosquito Culex pipiens. J Bacteriol 189(12):4442–4448PubMedCrossRefGoogle Scholar
  28. Dyson EA, Hurst GDD (2004) Persistence of an extreme sex-ratio bias in a natural population. PNAS 101(17):6520–6523PubMedCrossRefGoogle Scholar
  29. Dyson E, Kamath M, Hurst G (2002) Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88:166–171PubMedCrossRefGoogle Scholar
  30. Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231:345–355PubMedCrossRefGoogle Scholar
  31. Engelstädter J, Telschow A, Yamamura N (2008) Coexistence of cytoplasmic incompatibility and male-killing-inducing endosymbionts, and their impact on host flow. Theor Popul Biol 73:125–133PubMedCrossRefGoogle Scholar
  32. Fialho RF, Stevens L (2000) Male-killing Wolbachia in a flour beetle. Proc Biol Sci 267:1469–1474PubMedCrossRefGoogle Scholar
  33. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:599–614CrossRefGoogle Scholar
  34. Freeland SJ, McCabe BK (1997) Fitness compensation and the evolution of selfish cytoplasmic elements. Heredity 78:391–402CrossRefGoogle Scholar
  35. Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389PubMedCrossRefGoogle Scholar
  36. Ghelelovitch S (1952) Sur le determinisme genetique de la sterilite dans les croisements entre differentes souches de Culex autogenicus Roubaud. C R Acad Sci III 234:2386–2388Google Scholar
  37. Gibbs GW (1961) New Zealand butterflies. Tuatara J Biol Soc 9:65–76Google Scholar
  38. Gibson CM, Hunter MS (2009) Inherited fungal and bacterial endosymbiont of a parasitic wasp and its cockroach host. Microb Ecol 57(3):542–549PubMedCrossRefGoogle Scholar
  39. Haine ER (2008) Symbiont-mediated protection. Proc Biol Sci 275:353–361PubMedCrossRefGoogle Scholar
  40. Hamilton WD (1967) Extraordinary sex ratios. Science 156(774):477–488PubMedCrossRefGoogle Scholar
  41. Hedges LM, Brownlies JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702PubMedCrossRefGoogle Scholar
  42. Hertig M, Wolbach SB (1924) Studies on Rickettsia-like microorganisms in insects. J Med Res 44:329–374PubMedGoogle Scholar
  43. Hochberg ME (1991) Viruses as costs to gregarious feeding behaviors in the Lepidoptera. Oikos 61(3):291–296CrossRefGoogle Scholar
  44. Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD (2006) Evolution of male killer suppression in natural population. PLoS Biol 4(9):e283PubMedCrossRefGoogle Scholar
  45. Hornett EA, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD, Charlat S (2008) You can’t keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62(5):1258–1263PubMedCrossRefGoogle Scholar
  46. Hornett EA, Charlat S, Wedell N, Jiggins CD, Hurst GDD (2009) Rapidly shifting sex ratio across a species range. Curr Biol 19:1628–1631PubMedCrossRefGoogle Scholar
  47. Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R (2000) Infectious parthenogenesis. Nature 405:178–179PubMedCrossRefGoogle Scholar
  48. Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsis pergandiella. Proc Biol Sci 270:2185–2190PubMedCrossRefGoogle Scholar
  49. Hurst L (1991) The incidences and evolution of cytoplasmic male killers. Proc Biol Sci 244:91–99CrossRefGoogle Scholar
  50. Hurst GDD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6(4):329–336PubMedCrossRefGoogle Scholar
  51. Hurst GDD, Hurst LD, Majerus MEN (1997) Cytoplasmic sex ratio distorters. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropod reproduction. Oxford University Press Inc, New York, pp 125–154Google Scholar
  52. Hurst GDD, van der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stouthamer R, Majerus MEN (1999a) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8(1):133–139PubMedCrossRefGoogle Scholar
  53. Hurst GDD, Jiggins FM, van der Schulenburg JHG, Bertrand D, West SA, Goriacheva II, Zakharov IA, Werren JH, Stouthamer R, Majerus MEN (1999b) Male-killing Wolbachia in two species of insect. Proc Biol Sci 266(1420):735–740CrossRefGoogle Scholar
  54. Hurst GDD, Jiggins FM, Majerus MEN (2003) Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution? In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC Press, New York, NY, pp 177–197CrossRefGoogle Scholar
  55. Ikeda H (1970) The cytoplasmic-inherited ‘sex-ratio-condition’ in natural and experimental populations of Drosophila bifasciata. Genetics 65:311–333PubMedGoogle Scholar
  56. Iturbe-Ormaetxe I, Riegler M, O’Neill SL (2005) New names for old strains?Wolbachia wSim is actually wRi. Genome Biol 6:401PubMedCrossRefGoogle Scholar
  57. Jaenike J (2007) Spontaneous emergence of a new Wolbachia phenotype. Evolution 61(9):2244–2252PubMedCrossRefGoogle Scholar
  58. Jiggins FM, Hurst GDD, Jiggins CD, von der Schulenburg JHG, Majerus MEN (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446PubMedCrossRefGoogle Scholar
  59. Kageyama D, Narita S, Noda H (2008) Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. Microb Ecol 56(4):733–741PubMedCrossRefGoogle Scholar
  60. Kemp DJ (1998) Oviposition behaviour of post-diapause Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) in tropical Australia. Aust J Zool 46:451–459CrossRefGoogle Scholar
  61. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25(9):1877–1887PubMedCrossRefGoogle Scholar
  62. Klasson L, Westberga J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chend L, Braig HR, Garrett R, Bourtzis K, Andersson SGE (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. PNAS 106(14):5725–5730PubMedCrossRefGoogle Scholar
  63. Laven H (1959) Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harb Symp Quant Biol 24:166–175PubMedCrossRefGoogle Scholar
  64. Li W, Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. PNAS 100(Suppl 2):14593–14598PubMedCrossRefGoogle Scholar
  65. Lindroth RL (1989) Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomol Exp Appl 50:29–35CrossRefGoogle Scholar
  66. Lo N, Evans TA (2007) Phylogenetic diversity of the intracellular symbiont Wolbachia in termites. Mol Phylogenet Evol 44:461–466PubMedCrossRefGoogle Scholar
  67. Lo N, Paraskevopoulos C, Bourtzis K, O’Neill SL, Werren JH, Bordenstein SR, Bandi C (2007) Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 57:654–657PubMedCrossRefGoogle Scholar
  68. Majerus MEN, Hurst GDD (1997) Ladybirds as a model for the study of male-killing symbionts. Entomophaga 42(1/2):13–20CrossRefGoogle Scholar
  69. McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O’Neill SL (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74(22):6963–6969PubMedCrossRefGoogle Scholar
  70. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144PubMedCrossRefGoogle Scholar
  71. Moran NA (2006) Symbiosis. Curr Biol 16(20):866–871CrossRefGoogle Scholar
  72. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc Biol Sci 253:167–171CrossRefGoogle Scholar
  73. Moran NA, Baumann P, von Dohlen C (1994) Use of DNA sequences to reconstruct the history of the association between members of the Sternorrhyncha (Homoptera) and their bacterial endosymbionts. Eur J Entomol 91:79–83Google Scholar
  74. Moran NA, Dunbar HE, Wilcox JL (2005) Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol 187(12):4229–4237PubMedCrossRefGoogle Scholar
  75. Moreira LA, Iturbe-ormaetxe I, Jeffery JAL, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van der Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya and Plasmodium. Cell 139(7):1268–1278PubMedCrossRefGoogle Scholar
  76. Morishita and Kazuhiko (2002) A migrant from an oceanic island – Hypolimnas bolina, 6 days stay near Zushi Beach, Kanagawa, Japan. Butterflies 32:24–26Google Scholar
  77. Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z-Y (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448PubMedCrossRefGoogle Scholar
  78. Nafus DM (1993) Movement of introduced biological control agents onto nontarget butterflies, Hypolimnas spp. (Lepidoptera: Nymphalidae). Environ Entomol 22(2):265–272Google Scholar
  79. Narita S, Kageyama D, Nomura M, Fukatsu T (2007) Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73(13):4332–4341PubMedCrossRefGoogle Scholar
  80. Noda H, Kodama K (1996) Phylogenetic position of yeast-like endosymbionts of Anobiid beetles. Appl Environ Microbiol 62(1):162–167PubMedGoogle Scholar
  81. O’Neill SL, Hoffmann AA, Werren JH (1997) Influencial passengers,inherited microorganisms and arthropod reproduction. Oxford University Press Inc., New YorkGoogle Scholar
  82. Oliver KM, Campos J, Moran NA, Hunter MS (2007) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299CrossRefGoogle Scholar
  83. Patrick BH (2004) Invasion of the blue moon butterfly in Taranaki. Weta 28:45–46Google Scholar
  84. Perlman SJ, Kelly SE, Hunter MS (2008) Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics 178:1003–1011PubMedCrossRefGoogle Scholar
  85. Poulton EB (1923) All female families of Hypolimnas bolina, bred in Fiji by HW Simmonds. Proc R Ent Soc Lond 1923:9–12Google Scholar
  86. Ramsay GW (1971) The blue moon butterfly Hypolimnas bolina nerina in New Zealand during autumn, 1971. N Z Entomol 5:73–75CrossRefGoogle Scholar
  87. Ramsay GW, Ordish RG (1966) The Australian blue moon butterfly Hypolimnas bolina nerina (F.) in New Zealand. NZ J Sci 9:719–729Google Scholar
  88. Randerson JP, Smith NGC, Hurst LD (2000) The evolutionary dynamics of male-killers and their hosts. Heredity 84:152–160PubMedCrossRefGoogle Scholar
  89. Riegler M, Charlat S, Stauffer C, Mercot H (2004) Wolbachia transfer from Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host-symbiont coevolution. Appl Environ Microbiol 70(1):273–279PubMedCrossRefGoogle Scholar
  90. Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropod reproduction. Oxford University Press Inc, New York, pp 81–101Google Scholar
  91. Ruan Y-M, Xu J, Liu S-S (2006) Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomol Exp Appl 121:159–166CrossRefGoogle Scholar
  92. Russel JA, Moran NA (2005) Horizontal transfer of bacterial symbiont: heritability and fitness in a novel aphid host. Appl Environ Microbiol 71(12):7987–7994CrossRefGoogle Scholar
  93. Ryan PA, Harris AC (1990) A note of recent records of Australian butterflies in New Zealand. N Z Entomol 13:40–41CrossRefGoogle Scholar
  94. Sakamoto H, Ishikawa Y, Sasaki T, Kikuyama S, Tatsuki S, Hoshizaki S (2005) Transinfection reveals the crucial importance of Wolbachia genotypes in determining the type of reproductive alteration in the host. Genet Res 85:205–210PubMedCrossRefGoogle Scholar
  95. Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male-killing in Ephesia kuehniella. Genetics 162:1313–1319PubMedGoogle Scholar
  96. Sasaki T, Massaki N, Kubo T (2005) Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Heredity 95:389–393PubMedCrossRefGoogle Scholar
  97. Simmonds HW (1926) Sex ratio of Hypolimnas bolina in Viti Levu, Fiji. Proc R Ent Soc Lond 1:29–32Google Scholar
  98. Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HC, Parkhill J (2005) Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 14:257–260CrossRefGoogle Scholar
  99. Stamp NE, Bowers MD (1988) Direct and indirect effects of predatory wasps (Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: Saturniidae). Oecologia 75:619–624CrossRefGoogle Scholar
  100. Stouthamer R, Kazmer D (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327CrossRefGoogle Scholar
  101. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  102. Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15(11):437–442PubMedCrossRefGoogle Scholar
  103. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):2753–2763CrossRefGoogle Scholar
  104. Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34(9):2791–2802PubMedCrossRefGoogle Scholar
  105. Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296:1124–1126PubMedCrossRefGoogle Scholar
  106. van Nouhuys S, Hanski I (2005) Metacommunities of butterflies, their host plant, and their parasitoids. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities spatial dynamics and ecological communities. University of Chicago Press, USAGoogle Scholar
  107. Vandekerckhove TTM, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16 S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexpoda, Collembola) and its implications for Wolbachia taxonomy. FEMS Microbiol Lett 180:179–286Google Scholar
  108. Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GDD (2005) A functional dosage compensation complex required for male-killing in Drosophila. Science 307:1461–1463PubMedCrossRefGoogle Scholar
  109. Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP (2007) Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5(39):1–9Google Scholar
  110. Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482PubMedCrossRefGoogle Scholar
  111. Wen Z, Rupasinghe S, Niu G, Berenbaum MR, Schuler MA (2006) CYP6B1 and CYP6B3 of the Black Swallowtail (Papilio polyxenes): adaptative evolution through subfunctionalization. Mol Biol Evol 23(12):2434–2443PubMedCrossRefGoogle Scholar
  112. Werren JH (1987) The coevolution of autosomal and cytoplasmic sex ratio factors. J Theor Biol 124:317–334CrossRefGoogle Scholar
  113. Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropods reproduction. New York, Oxford University Press Inc., pp 1–41Google Scholar
  114. Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc Biol Sci 262:197–204CrossRefGoogle Scholar
  115. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Herve Tettelin, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:327–341CrossRefGoogle Scholar
  116. Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658PubMedCrossRefGoogle Scholar
  117. Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265(1395):509–515PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations