Geospatial Thinking pp 279-297

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC, volume 0) | Cite as

A Spatio-Temporal Model Towards Ad-Hoc Collaborative Decision-Making

Chapter

Abstract

For an autonomous agent, performing a task in a spatio-temporal environment often requires interaction with other agents. Such interaction can be initiated by ad-hoc collaborative planning and decision-making, which then leads to physical support on site. On-site collaboration is important for a variety of operations, such as search-and-rescue or pick-up-and-delivery. Tasks are performed through sequences of actions, and agents perceive possibilities for these actions in terms of affordances from the environment. Agent collaboration therefore requires the communication of affordances between agents with different capabilities. This paper introduces a spatio-temporal model for the decentralized decision-making of autonomous agents regarding on-site collaboration. Based on Janelle’s time-geographic perspective on communication modes, we demonstrate that different task situations lead to different spatiotemporal constraints on communication, involving both physical presence and telepresence. The application of such constraints leads to an optimized message distribution strategy and therefore efficient affordance communication with regard to maximizing support in performing a given task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sengupta, R. and R. Sieber, Geospatial Agents, Agents Everywhere ... Transactions in GIS, 2007. 11(4): p. 483-506.CrossRefGoogle Scholar
  2. 2.
    Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach. 2nd ed. Prentice Hall Series in Artificial Intelligence. 2003, London: Prentice Hall.Google Scholar
  3. 3.
    Wooldridge, M., Intelligent Agents, in Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence, G. Weiss, Editor. 1999, MIT Press: Cambridge, MA. p. 27-77.Google Scholar
  4. 4.
    O'Sullivan, D., Geographical information science: agent-based models. Progress in Human Geography, 2008. 32(4): p. 541-550.CrossRefGoogle Scholar
  5. 5.
    Benenson, I. and P. Torrens, Geosimulation - Automata-based modeling of urban phenomena. 2004, Chichester, England: Wiley.CrossRefGoogle Scholar
  6. 6.
    Batty, M., J. Desyllas, and E. Duxbury, The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. International Journal of Geographic Information Science, 2003. 17(7): p. 673–97.CrossRefGoogle Scholar
  7. 7.
    Raubal, M., S. Winter, S. Teßmann, and C. Gaisbauer, Time geography for adhoc shared-ride trip planning in mobile geosensor networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2007. 62(5): p. 366-381.CrossRefGoogle Scholar
  8. 8.
    Erol, K., J. Hendler, and D. Nau, Complexity results for HTN planning. Annals of Mathematics and Artificial Intelligence, 1996. 18(1): p. 69-93.CrossRefGoogle Scholar
  9. 9.
    Nittel, S., M. Duckham, and L. Kulik, Information dissemination in mobile adhoc geosensor networks, in Geographic Information Science - Third International Conference, GIScience 2004, M. Egenhofer, C. Freksa, and H. Miller, Editors. 2004, Springer: Berlin. p. 206-222.Google Scholar
  10. 10.
    Zhao, F. and L. Guibas, Wireless Sensor Networks. 2004, Amsterdam: Elsevier.Google Scholar
  11. 11.
    Sun, R., Prolegomena to Integrating Cognitive Modeling and Social Simulation, in Cognition and Multi-Agent Interaction, R. Sun, Editor. 2006, Cambridge University Press: New York, USA. p. 3-26.Google Scholar
  12. 12.
    Anderson, J., D. Bothell, M. Byrne, S. Douglass, C. Lebiere, and Y. Qin, An integrated theory of mind. Psychological Review, 2004. 111(4): p. 1036-1060.CrossRefGoogle Scholar
  13. 13.
    Newell, A., Unified Theories of Cognition. 1990, Cambridge, Massachusetts: Harvard University Press.Google Scholar
  14. 14.
    Sun, R., The CLARION Cognitive Architecture: Extending Cognitive Modeling to Social Simulation, in Cognition and Multi-Agent Interaction, R. Sun, Editor. 2006, Cambridge University Press: New York, USA. p. 79-99.Google Scholar
  15. 15.
    Schoder, D., K. Fischbach, and C. Schmitt, Core Concepts in Peer-to-Peer Networking, in Peer-to-Peer Computing: The Evolution of a Disruptive Technology, R. Subramanian and B. Goodman, Editors. 2005, Idea Group Inc.: Hershey, PA. p. 1-27.Google Scholar
  16. 16.
    Peng, J., M. Wu, X. Zhang, Y. Xie, F. Jiang, and Y. Liu, A Collaborative Multi-Agent Model with Knowledge-Based Communication for the RoboCupRescue Simulation. in International Symposium on Collaborative Technologies and Systems (CTS'06). 2006.Google Scholar
  17. 17.
    Luo, Y. and L. Bölöni. Children in the Forest: Towards a Canonical Problem of Spatio-Temporal Collaboration. in AAMAS'07, Int. Conference on Autonomous Agents and Multiagent Systems. 2007. Honolulu, Hawai'i, USA: IFAAMAS.Google Scholar
  18. 18.
    Broxvall, M., M. Gritti, A. Saffiotti, B.-S. Seo, and Y.-J. Cho, PEIS Ecology: Integrating Robots into Smart Environments. in IEEE International Conference on Robotics and Automation (ICRA). 2006. Orlando, Florida.Google Scholar
  19. 19.
    Winter, S. and S. Nittel, Ad-hoc shared-ride trip planning by mobile geosensor networks. International Journal of Geographical Information Science, 2006. 20(8): p. 899-916.CrossRefGoogle Scholar
  20. 20.
    Raubal, M., S. Winter, and C. Dorr, Decentralized Time Geography for Ad-Hoc Collaborative Planning, in Spatial Information Theory - 9th International Conference, COSIT 2009, Aber Wrac’h, France, September 2009, K. Stewart Hornsby, et al., Editors. 2009, Springer: Berlin. p. 436-452.Google Scholar
  21. 21.
    Gibson, J., The Ecological Approach to Visual Perception. 1979, Boston: Houghton Mifflin Company.Google Scholar
  22. 22.
    Norman, D., The Design of Everyday Things. 1988, New York: Doubleday.Google Scholar
  23. 23.
    Raubal, M., Ontology and epistemology for agent-based wayfinding simulation. International Journal of Geographical Information Science, 2001. 15(7): p. 653-665.CrossRefGoogle Scholar
  24. 24.
    Raubal, M. and R. Moratz, A functional model for affordance-based agents, in Towards Affordance-Based Robot Control - International Seminar, Dagstuhl Castle, Germany, June 5-9, 2006. Revised Papers E. Rome, J. Hertzberg, and G. Dorffner, Editors. 2008, Springer: Berlin. p. 91-105.Google Scholar
  25. 25.
    Stoffregen, T., Affordances and events. Ecological Psychology, 2000. 12: p. 1-28.CrossRefGoogle Scholar
  26. 26.
    Janowicz, K. and M. Raubal, Affordance-Based Similarity Measurement for Entity Types, in Spatial Information Theory - 8th International Conference, COSIT 2007, Melbourne, Australia, September 2007, S. Winter, et al., Editors. 2007, Springer: Berlin. p. 133-151.Google Scholar
  27. 27.
    Barsalou, L., Ad hoc categories. Memory & Cognition, 1983. 11: p. 211-227.Google Scholar
  28. 28.
    Hägerstrand, T., What about people in regional science? Papers of the Regional Science Association, 1970. 24: p. 7-21.Google Scholar
  29. 29.
    Ren, F. and M.-P. Kwan, Geovisualization of Human Hybrid Activity-Travel Patterns. Transactions in GIS, 2007. 11(5): p. 721-744.CrossRefGoogle Scholar
  30. 30.
    Raubal, M., H. Miller, and S. Bridwell, User-Centred Time Geography For Location-Based Services. Geografiska Annaler B, 2004. 86(4): p. 245-265.CrossRefGoogle Scholar
  31. 31.
    Miller, H., What about people in geographic information science?, in Re-Presenting Geographical Information Systems, P. Fisher and D. Unwin, Editors. 2005, John Wiley. p. 215-242.Google Scholar
  32. 32.
    Janelle, D., Impact of Information Technologies, in The Geography of Urban Transportation, S. Hanson and G. Giuliano, Editors. 2004, Guilford Press: New York. p. 86-112.Google Scholar
  33. 33.
    Dijkstra, E.W., A note on two problems in connection with graphs. Numerische Mathematik, 1959. 1(1): p. 269-271.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of GeomaticsThe University of MelbourneMelbourneAustralia

Personalised recommendations