Advertisement

Chapter 3: Search for Knowledge

  • Gerhard Weikum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5950)

Abstract

There are major trends to advance the functionality of search engines to a more expressive semantic level. This is enabled by the advent of knowledge-sharing communities such as Wikipedia and the progress in automatically extracting entities and relationships from semistructured as well as natural-language Web sources. In addition, Semantic-Web-style ontologies, structured Deep-Web sources, and Social-Web networks and tagging communities can contribute towards a grand vision of turning the Web into a comprehensive knowledge base that can be efficiently searched with high precision. This vision and position paper discusses opportunities and challenges along this research avenue. The technical issues to be looked into include knowledge harvesting to construct large knowledge bases, searching for knowledge in terms of entities and relationships, and ranking the results of such queries.

Keywords

Query Processing Ranking Model Keyword Query Triple Pattern Entity Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adar, E., Skinner, M., Weld, D.S.: Information Arbitrage across Multi-Lingual Wikipedia. In: WSDM 2009 (2009)Google Scholar
  2. 2.
    Jain, A., Ipeirotis, P.G., Doan, A., Gravano, L.: Join Optimization of Information Extraction Output: Quality Matters! In: ICDE 2009 (2009)Google Scholar
  3. 3.
    Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and Scoring. SIGMOD Record 35(4) (2006)Google Scholar
  4. 4.
    Anyanwu, K., Maduko, A., Sheth, A.P.: SPARQ2L: Towards Support for Subgraph Extraction Queries in RDF Databases. In: WWW 2007 (2007)Google Scholar
  5. 5.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Baeza-Yates, R.A., Ciaramita, M., Mika, P., Zaragoza, H.: Towards Semantic Search. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 4–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword Searching and Browsing in Databases using BANKS. In: ICDE 2002 (2002)Google Scholar
  8. 8.
    Breslin, J.G., Passant, A., Decker, S.: The Social Semantic Web. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data on the Web (LDOW 2008). In: WWW 2008 (2008)Google Scholar
  10. 10.
    Cafarella, M.J.: Extracting and Querying a Comprehensive Web Database. In: CIDR 2009 (2009)Google Scholar
  11. 11.
    Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic Information Retrieval Approach for Ranking of Database Query Results. ACM Trans. Database Syst. 31(3), 1134–1168 (2006)CrossRefGoogle Scholar
  12. 12.
    Ceri, S.: Search Computing. In: ICDE 2009 (2009)Google Scholar
  13. 13.
    Chakrabarti, S.: Dynamic Personalized Pagerank in Entity-Relation Graphs. In: WWW 2007 (2007)Google Scholar
  14. 14.
    Croft, W.B., Metzler, D., Strohman, T.: Search Engines - Information Retrieval in Practice. Addison-Wesley, Reading (2009)Google Scholar
  15. 15.
    G.: Towards a Universal Wordnet by Learning from Combined Evidence. In: CIKM 2009 (2009)Google Scholar
  16. 16.
    De Rose, P., Shen, W., Chen, F., Lee, Y., Burdick, D., Doan, A., Ramakrishnan, R.: DBLife: A Community Information Management Platform for the Database Research Community. In: CIDR 2007 (2007)Google Scholar
  17. 17.
    Doan, A., Gravano, L., Ramakrishnan, R., Vaithyanathan, S. (eds.): Special Issue on Information Extraction. SIGMOD Record, vol. 37(4) (2008)Google Scholar
  18. 18.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-model-based Ranking for Queries on RDF-Graphs. In: CIKM 2009 (2009)Google Scholar
  19. 19.
    Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open Information Extraction from the Web. CACM 51(12) (2008)Google Scholar
  20. 20.
    Graupmann, J., Schenkel, R., Weikum, G.: The SphereSearch Engine for Unified Ranked Retrieval of Heterogeneous XML and Web Documents. In: VLDB 2005 (2005)Google Scholar
  21. 21.
    Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based Keyword Search in Databases. TODS 33(1) (2008)Google Scholar
  22. 22.
    Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA: Searching and Ranking Knowledge. In: ICDE 2008 (2008)Google Scholar
  23. 23.
  24. 24.
    Nie, Z., Ma, Y., Shi, S., Wen, J.-R., Ma, W.-Y.: Web Object Retrieval. In: WWW 2007 (2007)Google Scholar
  25. 25.
    Pasca, M.: Towards Temporal Web Search. In: SAC 2008 (2008)Google Scholar
  26. 26.
    Petkova, D., Croft, W.B.: Hierarchical Language Models for Expert Finding in Enterprise Corpora. In: ICTAI 2006, pp. 599–608 (2006)Google Scholar
  27. 27.
    Preda, N., Suchanek, F.M., Kasneci, G., Neumann, T., Ramanath, M., Weikum, G.: ANGIE: Active Knowledge for Interactive Exploration. PVLDB 2(2) (2009)Google Scholar
  28. 28.
    Sarawagi, S.: Information Extraction. Foundations and Trends in Databases 2(1) (2008)Google Scholar
  29. 29.
    SeCo: Search Computing, http://www.search-computing.it/
  30. 30.
    Serdyukov, P., Hiemstra, D.: Modeling Documents as Mixtures of Persons for Expert Finding. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 309–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Staab, S., Studer, R.: Handbook on Ontologies, 2nd edn. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Stoyanovich, J., Bedathur, S.J., Berberich, K., Weikum, G.: EntityAuthority: Semantically Enriched Graph-Based Authority Propagation. In: WebDB 2007 (2007)Google Scholar
  33. 33.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a Core of Semantic Knowledge. In: WWW 2007 (2007)Google Scholar
  34. 34.
    Suchanek, F., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia and WordNet. Journal of Web Semantics 6(39) (2008)Google Scholar
  35. 35.
    Suchanek, F., Sozio, M., Weikum, G.: SOFIE: a Self-Organizing Framework for Information Extraction. In: WWW 2009 (2009)Google Scholar
  36. 36.
    Taneva, B., Kacimi, M., Weikum, G.: Gathering and Ranking Photos of Named Entities with High Precision, High Recall, and Diversity. In: WSDM 2010 (2010)Google Scholar
  37. 37.
    Vallet, D., Zaragoza, H.: Inferring the Most Important Types of a Query: a Semantic Approach. In: SIGIR 2008 (2008)Google Scholar
  38. 38.
    Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting, Querying, and Visualizing Temporal Knowledge from Wikipedia, Demo Paper. In: EDBT 2010 (2010)Google Scholar
  39. 39.
    Weikum, G., Kasneci, G., Ramanath, M., Suchanek, F.: Database and Information-Retrieval Methods for Knowledge Discovery. CACM 52(4) (2009)Google Scholar
  40. 40.
    Wu, F., Weld, D.S.: Automatically Refining the Wikipedia Infobox Ontology. In: WWW 2008 (2008)Google Scholar
  41. 41.
    Zhang, Q., Suchanek, F.M., Yue, L., Weikum, G.: TOB: Timely Ontologies for Business Relations. In: WebDB 2008 (2008)Google Scholar
  42. 42.
    Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.-R.: StatSnowball: a Statistical Approach to Extracting Entity Relationships. In: WWW 2009(2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerhard Weikum
    • 1
  1. 1.Max-Planck Institute for InformaticsSaarbrueckenGermany

Personalised recommendations