Advertisement

Clustering-Based Descriptors for Fingerprint Indexing and Fast Retrieval

  • Shihua He
  • Chao Zhang
  • Pengwei Hao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5994)

Abstract

This paper addresses the problem of fast fingerprint retrieval in a large database using clustering-based descriptors. Most current fingerprint indexing frameworks utilize global textures and minutiae structures. To extend the existing methods for feature extraction, previous work focusing on SIFT features has yielded high performance. In our work, other local descriptors such as SURF and DAISY are studied and a comparison of performance is made. A clustering method is used to partition the descriptors into groups to speed up retrieval. PCA is used to reduce the dimensionality of the cluster prototypes before selecting the closest prototype to an input descriptor. In the index instruction phase, the locality-sensitive hashing (LSH) is implemented for each descriptor cluster to efficiently retrieve similarity queries in a small fraction of the cluster. Experiments on public fingerprint databases show that the performance suffers little while the speed of retrieval is improved much using clustering-based SURF descriptors.

Keywords

fingerprint indexing fingerprint retrieval local descriptors clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maltoni, D., Miao, D., Jain, A.K., Prabhakar, A.: Handbook of Fingerprint Recognition. Springer, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Wilson, C.L., Candela, G.T., Watson, C.I.: Neural Network Fingerprint Classification. J. Artif. Neural Netw. 1(2), 241–246 (1993)Google Scholar
  3. 3.
    Liu, M., Jiang, X., Kot, A.C.: Fingerprint Retrieval for Identification. IEEE Trans. Pattern Recognition 40(6), 1793–1803 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Boer, J.D., Bazen, A.M., Gerez, S.H.: Indexing Fingerprint Databases Based on Multiple Features. In: Proc. ProRISC, 12th Annual Workshop on Circuits, Systems and Signal Processing (2001)Google Scholar
  5. 5.
    Bhanu, B., Tan, X.: Fingerprint Indexing Based on Novel Features of Minutiae Triplets. IEEE Trans. Pattern Analysis and Machine Intelligence 25(5), 616–622 (2003)CrossRefGoogle Scholar
  6. 6.
    Cappelli, R., Lumini, A., Miao, D., Maltoni, D.: Fingerprint Classification by Directional Image Partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence 110(3), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.C.: Speed-up Robust Features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2007)CrossRefGoogle Scholar
  9. 9.
    Tola, E., Lepetit, V., Fua, P.: A Fast Local Descriptor for Dense Matching. In: IEEE Proc. Computer Vision and Pattern Recognition (2008)Google Scholar
  10. 10.
    Shuai, X., Zhang, C., Hao, P.: Fingerprint Indexing Based on Composite Set of Reduced SIFT Features. In: IEEE Int. Conf. on Pattern Recognition (2008) Google Scholar
  11. 11.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Ross, A.: Fingerprint Mosaicking. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (2002)Google Scholar
  13. 13.
    Foo, J.J., Sinha, R.: Pruning SIFT for Scalable Near-Duplicate Detection and Sub-Image Retrieval. In: Proc. 18th Australian Database Conf., pp. 63–71 (2007)Google Scholar
  14. 14.
    Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hashing. In: Proc. 25th VLDB Conf., pp. 518–529 (1999)Google Scholar
  15. 15.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual Categorization with Bags of Keypoints. In: Proc. of ECCV International Workshop on Statistical Learning in Computer Vision (2004)Google Scholar
  16. 16.
    Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textions. International Journal of Computer Vision 43(1), 29–44 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Jain, A.K., Chen, Y., Demirkus, M.: Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 15–27 (2007)CrossRefGoogle Scholar
  18. 18.
    Ke, Y., Sukthankar, R., Huston, L.: Efficient Near-Duplicate Detection and Sub-Image Retrieval. In: Proc. ACM Multimedia Conf., pp. 869–876 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shihua He
    • 1
  • Chao Zhang
    • 1
  • Pengwei Hao
    • 1
    • 2
  1. 1.Key Laboratory of Machine Perception(Ministry of Education)Peking UniversityBeijingChina
  2. 2.Dept. of Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations