MIFT: A Mirror Reflection Invariant Feature Descriptor

  • Xiaojie Guo
  • Xiaochun Cao
  • Jiawan Zhang
  • Xuewei Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5995)

Abstract

In this paper, we present a mirror reflection invariant descriptor which is inspired from SIFT. While preserving tolerance to scale, rotation and even affine transformation, the proposed descriptor, MIFT, is also invariant to mirror reflection. We analyze the structure of MIFT and show how MIFT outperforms SIFT in the context of mirror reflection while performs as well as SIFT when there is no mirror reflection. The performance evaluation is demonstrated on natural images such as reflection on the water, non-rigid symmetric objects viewed from different sides, and reflection in the mirror. Based on MIFT, applications to image search and symmetry axis detection for planar symmetric objects are also shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: ICCV, vol. 1, pp. 525–531 (2001)Google Scholar
  2. 2.
    Kleban, J., Xie, X., Ma, W.: Spatial pyramid mining for logo detection in natural scenes. In: ICME, pp. 1077–1080 (2008)Google Scholar
  3. 3.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Brown, M., Lowe, D.: Recognising panoramas. In: ICCV (2003)Google Scholar
  5. 5.
    Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 20, pp. 147–152 (1988)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: IJCV, vol. 60, pp. 91–110 (2004)Google Scholar
  7. 7.
    Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: A performance evalution of local descriptors. PAMI 27, 1651–1630 (2004)Google Scholar
  9. 9.
    Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: CVPR, pp. 1–8 (2008)Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  11. 11.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: ACM International conference on Multimedia, pp. 357–360 (2007)Google Scholar
  12. 12.
    Ke, Y., Suktnankar, R.: Pca-sift: A more distictive representation for local image descriptors. In: CVPR, vol. 2, pp. 506–513 (2004)Google Scholar
  13. 13.
    Zhang, W., Kosecka, J.: Image based localization in urban environments. In: 3DPVT, pp. 33–40 (2006)Google Scholar
  14. 14.
    Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N.: Automatic gait recognition by symmetry analysis. In: Pattern Recognition Letters, vol. 24, pp. 2175–2183 (2003)Google Scholar
  15. 15.
    Choi, I., Chien, S.I.: A generlized symmetry transfor with selective attention capability for specific corner angels. IEEE Signal Processing Letters 11, 255–257 (2004)CrossRefGoogle Scholar
  16. 16.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  17. 17.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 381–395 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiaojie Guo
    • 1
  • Xiaochun Cao
    • 1
  • Jiawan Zhang
    • 1
  • Xuewei Li
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityChina

Personalised recommendations