Advertisement

Planar Scene Modeling from Quasiconvex Subproblems

  • Visesh Chari
  • Anil Nelakanti
  • Chetan Jakkoju
  • C. V. Jawahar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5995)

Abstract

In this paper, we propose a convex optimization based approach for piecewise planar reconstruction. We show that the task of reconstructing a piecewise planar environment can be set in an L  ∞  based Homographic framework that iteratively computes scene plane and camera pose parameters. Instead of image points, the algorithm optimizes over inter-image homographies. The resultant objective functions are minimized using Second Order Cone Programming algorithms. Apart from showing the convergence of the algorithm, we also empirically verify its robustness to error in initialization through various experiments on synthetic and real data. We intend this algorithm to be in between initialization approaches like decomposition methods and iterative non-linear minimization methods like Bundle Adjustment.

Keywords

Convex Optimization Rotation Parameter Bundle Adjustment Universal Scale Multiple View Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahl, F., Henrion, D.: Globally optimal estimates for geometric reconstruction problems. In: ICCV (2005)Google Scholar
  2. 2.
    Kahl, F.: Multiple view geometry and the l-infinity norm. In: ICCV (2005)Google Scholar
  3. 3.
    Sim, K., Hartley, R.: Removing outliers using the l-infinity norm. In: CVPR (1), pp. 485–494 (2006)Google Scholar
  4. 4.
    Hartley, R., Kahl, F.: Global optimization through searching rotation space and optimal estimation of the essential matrix. In: ICCV (2007)Google Scholar
  5. 5.
    Zhang, Z., Hanson, A.R.: 3d reconstruction based on homography mapping. In: ARPA (1996)Google Scholar
  6. 6.
    Kahl, F., Agarwal, S., Chandraker, M.K., Kriegman, D.J., Belongie, S.: Practical global optimization for multiview geometry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 592–605. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Mitra, K., Chellappa., R.: A scalable projective bundle adjustment algorithm using the 1 norm. In: ICVGIP (2008)Google Scholar
  8. 8.
    Bartoli, A., Sturm, P.: Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. In: IJCV (2003)Google Scholar
  9. 9.
    Chandraker, M., Kreigman, D.: Convex optimization for bilinear problems in computer vision. In: CVPR (2008)Google Scholar
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  11. 11.
    Faugeras, O., Lustman, F.: Motion and structure from motion in a piecewise planar environment. In: IJPRAI (1988)Google Scholar
  12. 12.
    Criminisi, A., Reid, I.D., Zisserman, A.: A plane measuring device. In: Image Vision Comput., pp. 625–634 (1999)Google Scholar
  13. 13.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Olsson, C., Kahl, F., Oskarsson, M.: Optimal estimation of perspective camera pose. In: ICPR (2006)Google Scholar
  15. 15.
    Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones (1999)Google Scholar
  16. 16.
    Bartoli, A.: A random sampling strategy for piecewise planar scene segmentation. In: CVIU, vol. 105(1), pp. 42–59 (2007)Google Scholar
  17. 17.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: Workshop on Vision Algorithms, pp. 298–372 (1999)Google Scholar
  18. 18.
    Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: ICCV (2005)Google Scholar
  19. 19.
    Agarwal, S., Snavely, N., Seitz, S.: Fast algorithms for l-inf problems in multiview geometry. In: CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Visesh Chari
    • 1
    • 2
  • Anil Nelakanti
    • 1
    • 3
  • Chetan Jakkoju
    • 1
  • C. V. Jawahar
    • 1
  1. 1.Center for Visual Information TechnologyInternational Institute of Information TechnologyHyderabadIndia
  2. 2.INRIA Rhône AlpesGrenobleFrance
  3. 3.MirriAd LimitedLondonUK

Personalised recommendations