Rotation Averaging with Application to Camera-Rig Calibration

  • Yuchao Dai
  • Jochen Trumpf
  • Hongdong Li
  • Nick Barnes
  • Richard Hartley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5995)


We present a method for calibrating the rotation between two cameras in a camera rig in the case of non-overlapping fields of view and in a globally consistent manner. First, rotation averaging strategies are discussed and an L 1-optimal rotation averaging algorithm is presented which is more robust than the L 2-optimal mean and the direct least squares mean. Second, we alternate between rotation averaging across several views and conjugate rotation averaging to achieve a global solution. Various experiments both on synthetic data and a real camera rig are conducted to evaluate the performance of the proposed algorithm. Experimental results suggest that the proposed algorithm realizes global consistency and a high precision estimate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, J.H., Li, H., Hartley, R.: Motion estimation for multi-camera systems using global optimization. In: Proc. Comput. Vis. Pattern Recognit., pp. 1–8 (2008)Google Scholar
  2. 2.
    Kim, J.H., Hartley, R., Frahm, J.M., Pollefeys, M.: Visual odometry for non-overlapping views using second-order cone programming. In: Proc. Asian Conf. on Computer Vision, pp. 353–362 (2007)Google Scholar
  3. 3.
    Li, H., Hartley, R., Kim, J.H.: A linear approach to motion estimation using generalized camera models. In: Proc. Comput. Vis. Pattern Recognit., pp. 1–8 (2008)Google Scholar
  4. 4.
    Kumar, R.K., Ilie, A., Frahm, J.-M., Pollefeys, M.: Simple calibration of non-overlapping cameras with a mirror. In: Proc. Comput. Vis. Pattern Recognit., pp. 1–7 (2008)Google Scholar
  5. 5.
    Esquivel, S., Woelk, F., Koch, R.: Calibration of a multi-camera rig from non-overlapping views. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 82–91. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Govindu, V.M.: Combining two-view constraints for motion estimation. In: Proc. Comput. Vis. Pattern Recognit., pp. 218–225 (2001)Google Scholar
  7. 7.
    Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proc. Comput. Vis. Pattern Recognit., pp. 684–691 (2004)Google Scholar
  8. 8.
    Govindu, V.M.: Robustness in motion averaging. In: Proc. Asian Conf. on Computer Vision, pp. 457–466 (2006)Google Scholar
  9. 9.
    Tron, R., Vidal, R., Terzis, A.: Distributed pose averaging in camera networks via consensus on SE(3). In: Second ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–10 (2008)Google Scholar
  10. 10.
    Tuzel, O., Subbarao, R., Meer, P.: Simultaneous multiple 3d motion estimation via mode finding on Lie groups. In: Int. Conf. Computer Vision, pp. 18–25 (2005)Google Scholar
  11. 11.
    Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: Proc. Comput. Vis. Pattern Recognit., pp. 1–8 (2007)Google Scholar
  13. 13.
    Sarlette, A., Sepulchre, R.: Consensus optimization on manifolds. SIAM J. Control Optim. 48(1), 56–76 (2009)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Agrawal, M.: A Lie algebraic approach for consistent pose registration for general euclidean motion. In: Int. Conf. Intelligent Robots and Systems, pp. 1891–1897 (2006)Google Scholar
  15. 15.
    Devarajan, D., Radke, R.J.: Calibrating distributed camera networks using belief propagation. EURASIP J. Appl. Signal Process. 2007(1) (2007)Google Scholar
  16. 16.
    Park, F., Martin, B.: Robot sensor calibration: solving AX=XB on the euclidean group. IEEE Transactions on Robotics and Automation 10(5), 717–721 (1994)CrossRefGoogle Scholar
  17. 17.
    Grove, K., Karcher, H., Ruh, E.A.: Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems. Math. Ann. 211, 7–21 (1974)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Manton, J.H.: A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups. In: Proceedings of the Eighth Int. Conf. on Control, Automation, Robotics and Vision, Kunming, China, pp. 2211–2216 (2004)Google Scholar
  19. 19.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  20. 20.
    Dai, Y., Trumpf, J., Li, H., Barnes, N., Hartley, R.: On rotation averaging in multi-camera systems. Technical report, Northwestern Polytechnical University and Australian National University (2009) (to appear)Google Scholar
  21. 21.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 381–395 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuchao Dai
    • 1
    • 2
  • Jochen Trumpf
    • 2
  • Hongdong Li
    • 3
    • 2
  • Nick Barnes
    • 3
    • 2
  • Richard Hartley
    • 2
    • 3
  1. 1.Shaanxi Key Laboratory of Information Acquisition and ProcessingSchool of Electronics and Information, Northwestern Polytechnical UniversityChina
  2. 2.Research School of Information Sciences and EngineeringThe Australian National University 
  3. 3.Canberra Research LabNICTA 

Personalised recommendations