Advertisement

A Subjective Method for Image Segmentation Evaluation

  • Qi Wang
  • Zengfu Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5996)

Abstract

Image segmentation is an important processing step in many image understanding algorithms and practical vision systems. Various image segmentation algorithms have been proposed and most of them claim their superiority over others. But in fact, no general acceptance has been gained of the goodness of these algorithms. In this paper, we present a subjective method to assess the quality of image segmentation algorithms. Our method involves the collection of a set of images belonging to different categories, optimizing the input parameters for each algorithm, conducting visual evaluation experiments and analyzing the final results. We outline the framework through an evaluation of four state-of-the-art image segmentation algorithms—mean-shift segmentation, JSEG, efficient graph based segmentation and statistical region merging, and give a detailed comparison of their different aspects.

Keywords

Image segmentation subjective evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deng, Y., Manjunath, J.B.S.: Unsupervised Segmentation of Color-texture Regions in Images and Video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)CrossRefGoogle Scholar
  2. 2.
    Nock, R., Nielsen, F.: Statistical Region Merging. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1452–1458 (2004)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-based Image Segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  4. 4.
    Comaniciu, D., Meer, P.: Mean shift: a Robust Approach toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  5. 5.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  6. 6.
    Cheng, H.D., Jiang, X.H., Wang, J.: Color Image Segmentation Based on Homogram Thresholding and Region Merging. Pattern Recognition 35, 373–393 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Crevier, D.: Image Segmentation Algorithm Development Using Ground Truth Image Data Sets. Computer Vision and Image Understanding 112(2), 143–159 (2008)Google Scholar
  8. 8.
    Benlamri, R., Al-Marzooqi, Y.: Free-form Object Segmentation and Representation from Registered Range and Color Images. Image and Vision Computing 22, 703–717 (2004)CrossRefGoogle Scholar
  9. 9.
    Mushrif, M.M., Ray, A.K.: Color Image Segmentation: Rough-set Theoretic Approach. Pattern Recognition Letters 29, 483–493 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, S., Siskind, J.M.: Image Segmentation with Ratio Cut. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(6), 675–690 (2003)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.J.: A Survey on Evaluation Methods for Image Segmentation. Pattern Recognition 29(8), 1335–1346 (1996)CrossRefGoogle Scholar
  12. 12.
    Liedtke, C.E., Gahm, T., Kappei, F., Aeikens, B.: Segmentation of Microscopic Cell Scenes. Analytical and Quantitative Cytology and Histology 9(3), 197–211 (1987)Google Scholar
  13. 13.
    Abdou, I.E., Pratt, W.K.: Quantitative Design and Evaluation of Enhancement/thresholding Edge Detectors. Proceedings of the IEEE 67(5), 753–763 (1979)CrossRefGoogle Scholar
  14. 14.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, New York (1992)Google Scholar
  15. 15.
    Huang, Q., Dom, B.: Quantitative Methods of Evaluating Image Segmentation. In: International Conference on Image Processing, vol. 3, pp. 53–56 (1995)Google Scholar
  16. 16.
    Levine, M.D., Nazif, A.M.: Dynamic Measurement of Computer Generated Image Segmentations. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(2), 155–164 (1985)CrossRefGoogle Scholar
  17. 17.
    Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A Survey of Thresholding Techniques. Computer Vision, Graphics, and Image Processing 41(2), 233–260 (1988)CrossRefGoogle Scholar
  18. 18.
    Monteiro, F.C., Campilho, A.C.: Performance Evaluation of Image Segmentation. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 248–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  20. 20.
    Ge, F., Wang, S., Liu, T.: Image-segmentation Evaluation from the Perspective of Salient Object Extraction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1146–1153 (2006)Google Scholar
  21. 21.
    Zhang, H., Fritts, J.E., Goldman, S.A.: Image Segmentation Evaluation: A Survey of Unsupervised Methods. Computer Vision and Image Understanding 110, 260–280 (2008)CrossRefGoogle Scholar
  22. 22.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward Objective Evaluation of Image Segmentation Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 929–944 (2007)CrossRefGoogle Scholar
  23. 23.
    Shaffrey, C.W., Jermyn, I.H., Kingsbury, N.G.: Phychovisual Evaluation of Image Segmentation Algorithms. In: Proceedings of Advanced Concepts for Intelligent Vision Systems (2002)Google Scholar
  24. 24.
    Cinque, C., Guerra, C., Levialdi, S.: Reply: On the Paper by R. M. Haralick. CVGIP: Image Understanding 60(2), 250–252 (1994)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Health, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A Robust Visual Method for Assessing the Relative Performance of Edge-detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(12), 1338–1359 (1997)CrossRefGoogle Scholar
  27. 27.
    Shrout, P.E., Fleiss, J.L.: Intraclass Correlation: Uses in Assessing Rater Reliability. Psychology Bulletin 86(2), 420–428 (1979)CrossRefGoogle Scholar
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qi Wang
    • 1
  • Zengfu Wang
    • 1
  1. 1.Dept. of AutomationUniversity of Science and Technology of China 

Personalised recommendations