Advertisement

Spatially Varying Regularization of Image Sequences Super-Resolution

  • Yaozu An
  • Yao Lu
  • Zhengang Zhai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5996)

Abstract

This paper presents a spatially varying super-resolution approach that estimates a high-resolution image from the low-resolution image sequences and better removes Gaussian additive noise with high variance. Firstly, a spatially varying functional in terms of local mean residual is used to weight each low-resolution channel. Secondly, a newly adaptive regularization functional based on the spatially varying residual is determined within each low-resolution channel instead of the overall regularization parameter, which balances the prior term and fidelity residual term at each iteration. Experimental results indicate the obvious performance improvement in both PSNR and visual effect compared to non-channel-weighted method and overall-channel-weighted method.

Keywords

Super resolution spatially varying weight adaptive regularization functional local mean residual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: A technical overview. IEEE Signal Process Magazine 20(3), 21–36 (2003)CrossRefGoogle Scholar
  2. 2.
    Kang, M.G., Katsaggelos, A.K.: General choice of the regularization functional in regularized image restoration. IEEE Transactions on Image Processing 4, 594–602 (1995)CrossRefGoogle Scholar
  3. 3.
    Leung, C.M., Lu, W.S.: A multiple-parameter generalization of the tikhonov-miller regularization method for image restoration. In: 27th Annual Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 856–860 (1993)Google Scholar
  4. 4.
    Lee, E.S., Kang, M.G.: Regularized Adaptive High- Resolution Image Reconstruction Considering Inaccurate Sub-pixel Registration. IEEE Transactions on Image Processing 12(7), 826–837 (2003)CrossRefGoogle Scholar
  5. 5.
    He, H., Kondi, L.P.: Resolution enhancement of video sequences with adaptively weighted low-resolution images and simultaneous estimation of the regularization parameter. In: Int. Conf. Acoustics, Speech and Signal Processing, vol. 3(5), pp. 213–216 (2004)Google Scholar
  6. 6.
    Golub, G.H., Heath, M.T., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Galatsanos, N.P., Katsaggelos, A.K.: Cross-validation and other criteria for estimating the regularization parameter. In: International Conference Acoustics, Speech and Signal Processing (ICASSP 1991), vol. 4, pp. 3021–3024 (1991)Google Scholar
  8. 8.
    Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using L-curve. In: The IEEE International Symposium on Circuits and Systems, Sydney, vol. 2, pp. 433–436 (2001)Google Scholar
  9. 9.
    Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 34(4), 561–580 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14(6), 1487–1503 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tian, J., Ma, K.K.: Markov chain Monte Carlo super- resolution image reconstruction with simultaneous adaptation of the prior image model. In: Zhuang, Y.-t., Yang, S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 287–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kang, M.G., Katsaggelos, A.K.: Simultaneous Multichannel Image Restoration and Estimation of the Regularization parameters. IEEE Trans. Image Processing, 774–778 (1997)Google Scholar
  13. 13.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture Preserving Variational Denoising Using an Adaptive Fidelity Term. In: Proc. VLSM 2003, Nice, France (2003)Google Scholar
  14. 14.
    Katsaggelos, A.K., Biemond, J., Schafer, R.W., Mersereau, R.M.: A regularized Iterative Image Restoration Algorithm. IEEE Transactions on Signal Processing 39(4), 914–929 (1991)CrossRefGoogle Scholar
  15. 15.
    Kang, M.G., Katsaggelos, A.K.: Simultaneous iterative restoration and evaluation of the regularization parameter. IEEE Trans. Signal Processing 40, 2329–2334 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yaozu An
    • 1
  • Yao Lu
    • 1
  • Zhengang Zhai
    • 1
    • 2
  1. 1.Beijing Laboratory of Intelligent Information Technology, School of ComputerBeijing Institute of TechnologyBeijingChina
  2. 2.Air Defense Forces Command CollegeZhengzhouChina

Personalised recommendations