Advertisement

Model Order and Terminal Reduction Approaches via Matrix Decomposition and Low Rank Approximation

  • Peter BennerEmail author
  • André Schneider
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 14)

Abstract

We discuss methods for model order reduction (MOR) of linear systems with many input and output variables, arising in the modeling of linear (sub) circuits with a huge number of nodes and a large number of terminals, like power grids. Our work is based on the approaches SVDMOR and ESVDMOR proposed in recent publications (1; 2; 3; 4; 5). In particular, we discuss efficient numerical algorithms for their implementation. Only by using efficient tools from numerical linear algebra, these methods become applicable for truly large-scale problems.

Keywords

Singular Value Decomposition Model Order Reduction Very Large Scale Integration Krylov Subspace Method Singular Value Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feldmann, P., Liu, F.: Sparse and efficient reduced order modeling of linear subcircuits with large number of terminals. In: ICCAD ’04: Proceedings of the 2004 IEEE/ACM Intl. Conf. Computer-aided design, pp. 88–92. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  2. 2.
    Liu, P., Tan, S.X.D., Li, H., Qi, Z., Kong, J., McGaughy, B., He, L.: An efficient method for terminal reduction of interconnect circuits considering delay variations. In: ICCAD ’05: Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 821–826. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  3. 3.
    Liu, P., Tan, S.X.D., Yan, B., Mcgaughy, B.: An extended SVD-based terminal and model order reduction algorithm. In: Proceedings of the 2006 IEEE International, Behavioral Modeling and Simulation Workshop, pp. 44–49 (2006)Google Scholar
  4. 4.
    Liu, P., Tan, S.X.D., Yan, B., McGaughy, B.: An efficient terminal and model order reduction algorithm. Integr. VLSI J. 41(2), 210–218 (2008)CrossRefGoogle Scholar
  5. 5.
    Tan, S.X.D., He, L.: Advanced Model Order Reduction Techniques in VLSI Design. Cambridge University Press, New York, NY, USA (2007)CrossRefGoogle Scholar
  6. 6.
    Tan, S.X.D., Shi, C.J.R., Lungeanu, D., Lee, J.C., Yuan, L.P.: Reliability-Constrained Area Optimization of VLSI Power/Ground Networks Via Sequence of Linear Programmings. In: in Proceedings of the ACM/IEEE Design Automation Conference, pp. 78–83 (1999)Google Scholar
  7. 7.
    Singh, J., Sapatnekar, S.: Congestion-aware topology optimization of structured power/ground networks. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 24(5), 683–695 (2005)CrossRefGoogle Scholar
  8. 8.
    Lin, Z., Carpenter, A., Ciftcioglu, B., Garg, A., Huang, M., Hui, W.: Injection-locked clocking: A low-power clock distribution scheme for high-performance microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(9), 1251–1256 (2008)Google Scholar
  9. 9.
    Stoll, M.: A Krylov-Schur approach to the truncated SVD. Preprint, available at http://www.comlab.ox.ac.uk/files/721/NA-08-03.pdf (2008)
  10. 10.
    Hochstenbach, M.E.: A Jacobi–Davidson type SVD method. SIAM J. Sci. Comput. 23(2), 606–628 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Berry, M.W., Pulatova, S.A., Stewart, G.W.: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices. ACM Trans. Math. Softw. 31(2), 252–269 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chan, T.F., Hansen, P.C.: Computing truncated singular value decomposition least squares solutions by rank revealing QR-factorizations. SIAM J. Sci. Stat. Comput. 11(3), 519–530 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13(1), 357–385 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lehoucq, R., Sorensen, D., Yang, C.: ARPACK user’s guide. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Software - Environments - Tools, 6. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. 142 p. (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations