Using the Quantum Probability Ranking Principle to Rank Interdependent Documents

  • Guido Zuccon
  • Leif Azzopardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5993)

Abstract

A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, S.E.: The probability ranking principle in IR. Journal of Documentation 33, 294–304 (1977)CrossRefGoogle Scholar
  2. 2.
    Eisenberg, M., Berry, C.: Order effects: A study of the possible influence of presentation order on user judgments of document relevance. JASIS 39(5), 293–300 (2007)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: SIGIR 2006, pp. 429–436 (2006)Google Scholar
  4. 4.
    Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR 2003, pp. 10–17 (2003)Google Scholar
  5. 5.
    Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: SIGIR 2009, pp. 115–122 (2009)Google Scholar
  6. 6.
    Clarke, C.L., Kolla, M., Vechtomova, O.: An effectiveness measure for ambiguous and underspecified queries. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)Google Scholar
  8. 8.
    Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998, pp. 335–336 (1998)Google Scholar
  9. 9.
    Zuccon, G., Azzopardi, L., van Rijsbergen, K.: The quantum probability ranking principle for information retrieval. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 232–240. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Khrennikov, A.: Interpretations of probabilities. Walter de Gruyter, Berlin (2009)CrossRefGoogle Scholar
  11. 11.
    Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR 2008, pp. 659–666 (2008)Google Scholar
  12. 12.
    Gordon, M.D., Lenk, P.: When is the probability ranking principle suboptimal. JASIS 43(1), 1–14 (1999)CrossRefGoogle Scholar
  13. 13.
    Cooper, W.S.: The inadequacy of probability of usefulness as a ranking criterion for retrieval system output. Unpublished working paper (1971)Google Scholar
  14. 14.
    Gordon, M.D., Lenk, P.: A utility theoretic examination of the probability ranking principle in information retrieval. JASIS 42(10), 703–714 (1999)CrossRefGoogle Scholar
  15. 15.
    Fuhr, N.: A probability ranking principle for interactive information retrieval. JIR 12(3), 251–265 (2008)Google Scholar
  16. 16.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Melucci, M.: A basis for information retrieval in context. ACM TOIS 26(3), 1–41 (2008)CrossRefGoogle Scholar
  18. 18.
    Piwowarski, B., Lalmas, M.: A quantum-based model for interactive information retrieval. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 224–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Hou, Y., Song, D.: Characterizing pure high-order entanglements in lexical semantic spaces via information geometry. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 237–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Flender, C., Kitto, K., Bruza, P.: Beyond ontology in information systems. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 276–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Huertas-Rosero, A.F., Azzopardi, L., van Rijsbergen, C.J.: Eraser lattices and semantic contents. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 266–275. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guido Zuccon
    • 1
  • Leif Azzopardi
    • 1
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations