Advertisement

A Functional Framework for Result Checking

  • Gilles Barthe
  • Pablo Buiras
  • César Kunz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6009)

Abstract

Result checking is a general methodology for ensuring that untrusted computations are valid. Its essence lies in defining efficient checking procedures to verify that a result satisfies some expected property. Result checking often relies on certificates to make the verification process efficient, and thus involves two strongly connected tasks: the generation of certificates and the implementation of a checking procedure. Several ad-hoc solutions exist, but they differ significantly on the kind of properties involved and thus on the validation procedure. The lack of common methodologies has been an obstacle to the applicability of result checking to a more comprehensive set of algorithms. We propose the first framework for building result checking infrastructures for a large class of properties, and illustrate its generality through several examples. The framework has been implemented in Haskell.

Keywords

Sorting Algorithm Functional Programming Proof Assistant Functional Framework Result Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe, G., Crégut, P., Grégoire, B., Jensen, T.P., Pichardie, D.: The mobius proof carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1), 269–291 (1995)MATHCrossRefGoogle Scholar
  3. 3.
    Bright, J.D.: Checking and Certifying Computational Results. PhD thesis (1994)Google Scholar
  4. 4.
    Brunn, T., Moller, B., Russling, M.: Layered graph traversals and hamiltonian path problems-an algebraic approach. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 96–121. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Caprotti, O., Oostdijk, M.: Formal and efficient primality proofs by use of computer algebra oracles. J. Symb. Comput. 32(1/2), 55–70 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Erwig, M.: Functional programming with graphs. In: Proceedings of the second ACM SIGPLAN international conference on Functional programming, pp. 52–65. ACM, New York (1997)CrossRefGoogle Scholar
  7. 7.
    Grégoire, B., Théry, L., Werner, B.: A computational approach to pocklington certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hudak, P., Peyton Jones, S.L., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.H., Guzmán, M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R.B., Nikhil, R.S., Partain, W., Peterson, J.: Report on the Programming Language Haskell, A Non-strict, Purely Functional Language. SIGPLAN Notices 27(5), R1–R164 (1992)Google Scholar
  10. 10.
    Hudak, P., Peterson, J., Fasel, J.: A gentle introduction to Haskell 98 (1999), http://www.haskell.org/tutorial/
  11. 11.
    Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type inference for GADTs. In: Proceedings of the eleventh ACM SIGPLAN international conference on Functional programming, pp. 50–61. ACM, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: Morrisett, J.G., Peyton Jones, S.L. (eds.) POPL, pp. 42–54. ACM, New York (2006)Google Scholar
  13. 13.
    Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119 (1997)Google Scholar
  14. 14.
    Sullivan, G.F., Masson, G.M.: Using certification trails to achieve software fault tolerance. In: 20th International Symposium on Fault-Tolerant Computing, FTCS-20. Digest of Papers, June 1990, pp. 423–431 (1990)Google Scholar
  15. 15.
    Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Zipitría, F.: Towards secure distributed computations. Master’s thesis, Universidad de la República, Uruguay (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Pablo Buiras
    • 1
    • 2
  • César Kunz
    • 1
  1. 1.IMDEA SoftwareSpain
  2. 2.FCEIAUniversidad Nacional de RosarioArgentina

Personalised recommendations