Advertisement

Towards Normalization by Evaluation for the βη-Calculus of Constructions

  • Andreas Abel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6009)

Abstract

We consider the Calculus of Constructions with typed beta-eta equality and an algorithm which computes long normal forms. The normalization algorithm evaluates terms into a semantic domain, and reifies the values back to terms in normal form. To show termination, we interpret types as partial equivalence relations between values and type constructors as operators on PERs. This models also yields consistency of the beta-eta-Calculus of Constructions. The model construction can be carried out directly in impredicative type theory, enabling a formalization in Coq.

Keywords

Normal Form Type Theory Proof Assistant Type Constructor Strong Normalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abe10]
    Abel, A.: Towards Normalization by Evaluation for the Calculus of Constructions (Extended Version). Available on the author’s homepage (2010)Google Scholar
  2. [ACCL91]
    Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. JFP 1(4), 375–416 (1991)zbMATHCrossRefGoogle Scholar
  3. [ACD07]
    Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In: LICS 2007, pp. 3–12. IEEE CS Press, Los Alamitos (2007)Google Scholar
  4. [ACD08]
    Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for Martin-Löf type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 29–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. [ACP09]
    Abel, A., Coquand, T., Pagano, M.: A modular type-checking algorithm for type theory with singleton types and proof irrelevance. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 5–19. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. [Ada06]
    Adams, R.: Pure type systems with judgemental equality. JFP 16(2), 219–246 (2006)zbMATHCrossRefGoogle Scholar
  7. [Bar09]
    Barras, B.: Sets in Coq, Coq in sets. In: The 1st Coq Workshop, Proceedings, Technische Universität München (2009)Google Scholar
  8. [BW97]
    Barras, B., Werner, B.: Coq in Coq. Available on the WWW (1997)Google Scholar
  9. [Car86]
    Cartmell, J.: Generalised algebraic theories and contextual categories. In: APAL, pp. 32–209 (1986)Google Scholar
  10. [CG90]
    Coquand, T., Gallier, J.: A proof of strong normalization for the theory of constructions using a kripke-like interpretation. In: Proceedings of the First Workshop on Logical Frameworks (1990)Google Scholar
  11. [Cha09]
    Chapman, J.: Type Checking and Normalization. PhD thesis, School of Computer Science, University of Nottingham (2009)Google Scholar
  12. [Coq96]
    Coquand, T.: An algorithm for type-checking dependent types. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 167–177. Springer, Heidelberg (1995)Google Scholar
  13. [Dan07]
    Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 93–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [Geu94]
    Geuvers, H.: A short and flexible proof of strong normalization for the Calculus of Constructions. In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 14–38. Springer, Heidelberg (1995)Google Scholar
  15. [GL02]
    Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP 2002. SIGPLAN Notices, vol. 37, pp. 235–246. ACM, New York (2002)CrossRefGoogle Scholar
  16. [GN91]
    Geuvers, H., Nederhof, M.-J.: Modular proof of strong normalization for the calculus of constructions. JFP 1(2), 155–189 (1991)zbMATHMathSciNetGoogle Scholar
  17. [Gog94]
    Goguen, H.: A Typed Operational Semantics for Type Theory. PhD thesis, University of Edinburgh. Available as LFCS Report ECS-LFCS-94-304 (1994)Google Scholar
  18. [Gon04]
    Gonthier, G.: A computer-checked proof of the four colour theorem. Technical report, Microsoft Research (2004), http://research.microsoft.com/~gonthier/
  19. [Gra09]
    Granström, J.: Reference and Computation in Intuitionistic Type Theory. PhD thesis, Mathematical Logic, Uppsala University (2009)Google Scholar
  20. [Hue89]
    Huet, G.: The constructive engine. In: Narasimhan, R. (ed.) 2nd European Symposium on Programming, Nancy, March 1988. Final version in anniversary volume Theoretical Computer Science in memory of Gift Siromoney. World Scientific Publishing, Singapore (1989)Google Scholar
  21. [INR08]
    INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.2 edition (2008), http://coq.inria.fr/
  22. [Ler06]
    Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: POPL 2006, pp. 42–54. ACM, New York (2006)CrossRefGoogle Scholar
  23. [Luo89]
    Luo, Z.: ECC, an Extended Calculus of Constructions. In: LICS 1989, pp. 386–395. IEEE CS Press, Los Alamitos (1989)Google Scholar
  24. [Miq00]
    Miquel, A.: A model for impredicative type systems, universes, intersection types and subtyping. In: LICS, pp. 18–29 (2000)Google Scholar
  25. [MW03]
    Miquel, A., Werner, B.: The not so simple proof-irrelevant model of CC. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 240–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. [Pol94]
    Pollack, R.: Closure under alpha-conversion. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 313–332. Springer, Heidelberg (1994)Google Scholar
  27. [Pol06]
    Pollack, R.: The constructive engine. Talk presented at the TYPES Workshop Curry-Howard Implementation Techniques - Connecting Humans And Theorem provers, CHIT-CHAT 2006, Radboud University, Nijmegen, The Netherlands (2006)Google Scholar
  28. [SG96]
    Stefanova, M., Geuvers, H.: A simple model construction for the calculus of constructions. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 249–264. Springer, Heidelberg (1996)Google Scholar
  29. [Wer92]
    Werner, B.: A normalization proof for an impredicative type system with large eliminations over integers. In: TYPES 1992, pp. 341–357 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Abel
    • 1
  1. 1.Project PI.R2, INRIA Rocquencourt and PPS, Paris 

Personalised recommendations