The Problem with Evolutionary Art Is ...

  • Philip Galanter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6025)

Abstract

Computational evolutionary art has been an active practice for at least 20 years. Given the remarkable advances in that time in other realms of computing, including other forms of evolutionary computing, for many a vague feeling of disappointment surrounds evolutionary art. Aesthetic improvement in evolutionary art has been slow, and typically achieved in ways that are not widely generalizable or extensible. So what is the problem with evolutionary art? And, frankly, why isn’t it better? In this paper I respond to these questions from my point of view as a practicing artist applying both a technical and art theoretical understanding of evolutionary art. First the lack of robust fitness functions is considered with particular attention to the problem of computational aesthetic evaluation. Next the issue of genetic representation is discussed in the context of complexity and emergence. And finally, and perhaps most importantly, the need for art theory around evolutionary and generative art is discussed, and a theory that stands typical evolutionary art on its head is proposed.

Keywords

Fitness Function Genetic Representation Evolutionary Computing Aesthetic Judgment Complexification Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Todd, S., Latham, W.: Evolutionary art and computers, 224 p., 32 p. of plates, Academic Press, London (1992)Google Scholar
  2. 2.
    Fogel, L.J.: Intelligence through simulated evolution: forty years of evolutionary programming. Wiley series on intelligent systems, vol. Xii, p. 162. Wiley, New York (1999)MATHGoogle Scholar
  3. 3.
    Lewis, M.: Evolutionary Visual Art and Design, in The art of artificial evolution: a handbook on evolutionary art and music. In: Romero, J., Machado, P. (eds.), pp. 3–37. Springer, Berlin (2008)Google Scholar
  4. 4.
    Werner, G.M., Todd, P.M.: Frankensteinian Methods for Evolutionary Music Composition. In: Griffith, N., Todd, P.M. (eds.) Musical networks: Parallel distributed perception and performance. MIT Press/Bradford Books, Cambridge (1998)Google Scholar
  5. 5.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  6. 6.
    Yuan, J.: Large population size IGAs with individuals’ fitness not assigned by user. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 267–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Draves, S.: The electric sheep screen-saver: A case study in aesthetic evolution. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 458–467. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Ross, A.: Poll stars. Artforum International 33(5) (1995)Google Scholar
  9. 9.
    Aldiss, B.: The mechanical Turk - The true story of the chess-playing machine that changed the world. In: Tls-the Times Literary Supplement, vol. (5170), p. 33 (2002)Google Scholar
  10. 10.
    Saunders, R., Gero, J.S.: Curious agents and situated design evaluations. Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing 18(2), 153–161 (2004)Google Scholar
  11. 11.
    Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jaskowski, W.: Learning and recognition of hand-drawn shapes using generative genetic programming. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS (LNAI, LNBI), vol. 4448, pp. 281–290. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Fornari, J.: Creating soundscapes using evolutionary spatial control. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS (LNAI, LNBI), vol. 4448, pp. 517–526. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Ciesielski, V.: Evolution of animated photomosaics. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS (LNAI, LNBI), vol. 4448, pp. 498–507. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    McDermott, J., Griffith, N.J.L., O’Neill, M.: Toward user-directed evolution of sound synthesis parameters. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 517–526. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Khalifa, Y., Foster, R.: A two-stage autonomous evolutionary music composer. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 717–721. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Manaris, B., et al.: Developing fitness functions for pleasant music: Zipf’s law and interactive evolution systems. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 498–507. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Mori, T., Endou, Y., Nakayama, A.: Fractal analysis and aesthetic evaluation of geometrically overlapping patterns. Textile Research Journal 66(9), 581–586 (1996)CrossRefGoogle Scholar
  19. 19.
    Taylor, R.P., Chaos, F.: Nature: a new look at Jackson Pollock. Fractals Research, Eugene (2006)Google Scholar
  20. 20.
    Birkhoff, G.D.: Aesthetic measure, vol. xii, pp. 2 l., 3-225. Harvard University Press, Cambridge (1933)Google Scholar
  21. 21.
    Machado, P.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)Google Scholar
  22. 22.
    Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: Romero, J., Machado, P. (eds.) The art of artificial evolution: a handbook on evolutionary art and music. Springer, Berlin (2008)Google Scholar
  23. 23.
    Phon-Amnuaisuk, S.: Evolving music generation with SOM-fitness genetic programming. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS (LNAI, LNBI), vol. 4448, pp. 557–566. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Gedeon, T.D.: Neural network for modeling esthetic selection. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS (LNAI, LNBI), vol. 4985, pp. 666–674. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Machado, P., et al.: Partially Interactive Evolutionary Artists. New Generation Computing 23(2), 143–155 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Machwe, A.T.: Towards an interactive, generative design system: Integrating a ’build and evolve’ approach with machine learning for complex freeform design. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS (LNAI, LNBI), vol. 4448, pp. 449–458. Springer, Heidelberg (2007)Google Scholar
  27. 27.
    Martindale, C.: A Neural-Network Theory of Beauty. In: Martindale, C., Locher, P., Petrov, V.M. (eds.) Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts, pp. 181–194. Baywood Pub., Amityville (2007)Google Scholar
  28. 28.
    Hawkins, J., Blakeslee, S.: On intelligence, 1st edn., 261 p. Times Books, New York (2004)Google Scholar
  29. 29.
    Watanabe, S.: Pigeons can discriminate “good” and “bad” paintings by children. Animal Cognition (2009)Google Scholar
  30. 30.
    Varnedoe, K., et al.: Jackson Pollock. In: Abrams, H.N. (Distributed by), 336 p. Museum of Modern Art, New York (1998)Google Scholar
  31. 31.
    Read, H.E., Stangos, N.: The Thames and Hudson dictionary of art and artists. In: Rev., expanded and updated ed. World of art, 384 p. Thames and Hudson, New York (1994)Google Scholar
  32. 32.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27(3), 379–423 (1948)MathSciNetMATHGoogle Scholar
  33. 33.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)MathSciNetGoogle Scholar
  34. 34.
    Solomonoff, R.J.: A formal theory of inductive inference, Part I and Part II. Information and Control 7, 1–22, 224-254(1964)Google Scholar
  35. 35.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM (13), 547–569 (1966)Google Scholar
  36. 36.
    Casti, J.L.: Complexification: explaining a paradoxical world through the science of surprise, 1st edn., vol. xiv, 320 p. HarperCollins, New York (1994)Google Scholar
  37. 37.
    Bentley, P., Corne, D.: Creative evolutionary systems, vol. xxxi, 576 p., 8 p. of plates. Morgan Kaufmann/Academic Press (2002)Google Scholar
  38. 38.
    Carroll, N.: Theories of art today, vol. vi, 368 p. University of Wisconsin Press, Madison (2000)Google Scholar
  39. 39.
    McCormack, J.: Facing the Future: Evolutionary Possibilities for Human-Machine Creativity. In: Romero, J., Machado, P. (eds.) The art of artificial evolution: a handbook on evolutionary art and music, pp. 417–451. Springer, Berlin (2008)Google Scholar
  40. 40.
    Whitelaw, M.: Metacreation: art and artificial life, vol. x, 281 p. MIT Press, Cambridge (2004)Google Scholar
  41. 41.
    Galanter, P.: What is Generative Art? Complexity theory as a context for art theory. In: International Conference on Generative Art. Generative Design Lab. Milan Polytechnic, Milan (2003)Google Scholar
  42. 42.
    Galanter, P.: What is Complexism? Generative Art and the Cultures of Science and the Humanities. In: International Conference on Generative Art. Generative Design Lab, Milan Polytechnic, Milan (2008)Google Scholar
  43. 43.
    Galanter, P.: Complexism and the role of evolutionary art. In: Romero, J., Machado, P. (eds.) The art of artificial evolution: a handbook on evolutionary art and music, pp. 311–332. Springer, Berlin (2008)Google Scholar
  44. 44.
    Greenberg, C., O’Brian, J.: The collected essays and criticism. University of Chicago Press, Chicago (1986)Google Scholar
  45. 45.
    Kauffman, S.A.: At home in the universe: the search for laws of self-organization and complexity, vol. viii, p. 321. Oxford University Press, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philip Galanter
    • 1
  1. 1.Department of VisualizationTexas A&M University, College StationTexasUSA

Personalised recommendations