A Study of Nature-Inspired Methods for Financial Trend Reversal Detection

  • Antonia Azzini
  • Matteo De Felice
  • Andrea G. B. Tettamanzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6025)


This paper presents an application of two nature-inspired algorithms to the financial problem concerning the detection of turning points. Nature-Inspired methods are receiving a growing interest due to their ability to cope with complex tasks like classification, forecasting and anomaly detection problems. A swarm intelligence algorithm, Particle Swarm Optimization (PSO), and an artificial immune system one, the Negative Selection (NS), are applied to the problem of detection of turning points, modeled as an Anomaly Detection (AD) problem, and their performances are compared. Both methods are found to give interesting results with respect to an unpredictable behavior.


Particle Swarm Optimization Negative Selection Particle Swarm Optimization Algorithm Anomaly Detection Artificial Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azzini, A., De Felice, M., Meloni, S., Tettamanzi, A.G.B.: Soft computing techniques for Internet backbone traffic anomaly detection. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 99–104. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Balachandran, S., Dasgupta, D., Nino, F., Garrett, D.: A framework for evolving multi-shaped detectors in negative selection. In: Proc. of IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, pp. 401–408 (2007)Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  4. 4.
    Bouvry, P., Seredynsky, F.: Anomaly detection in TCP/IP networks using immune systems paradigm. Computer Comm. 30, 740–749 (2007)CrossRefGoogle Scholar
  5. 5.
    Colby, R.: The Encyclopedia of Technical Market Indicators, 2nd edn. McGraw-Hill, New York (2002)Google Scholar
  6. 6.
    Dasgupta, D., Ji, Z.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    De Castro, N.L., von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  8. 8.
    Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proc. of the IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)Google Scholar
  9. 9.
    Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Sustems for Data Mining. Trans. on Evolutionary Computation 11(4) (August 2007)Google Scholar
  10. 10.
    Herbst, A.: Analyzing and Forecasting Futures Prices. Wiley, New York (1992)Google Scholar
  11. 11.
    Peters, E.: Chaos and Order in the Capital Markets, 2nd edn. Wiley, New York (1996)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE International Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)Google Scholar
  13. 13.
    Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Natural Computing 6, 413–466 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Vince, R.: The Handbook of Portfolio Mathematics: Formulas for optimal allocation & leverage. Wiley, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antonia Azzini
    • 1
  • Matteo De Felice
    • 2
    • 3
  • Andrea G. B. Tettamanzi
    • 1
  1. 1.Dipartimento di Tecnologie dell’InformazioneUniversità degli Studi di Milano 
  2. 2.ENEA (Italian Energy New Technology and Environment Agency) 
  3. 3.Dipartimento di Informatica e AutomazioneUniversità degli Studi “Roma Tre” 

Personalised recommendations