Design of Continuous Controllers Using a Multiobjective Differential Evolution Algorithm with Spherical Pruning

  • Gilberto Reynoso-Meza
  • Javier Sanchis
  • Xavier Blasco
  • Miguel Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)

Abstract

Controller design has evolved to a multiobjective task, i.e., today is necessary to take into account, besides any performance requirement, robustness requisites, frequency domain specifications and uncertain model parameters in the design process. The designer (control engineer), as Decision Maker, has to select the best choice according to his preferences and the trade-off he wants to achieve between conflicting objectives. In this work, a new multiobjective optimization approach using Differential Evolution (DE) algorithm is presented for the design of (but not limited to) Laplace domain controllers. The methodology is used to propose a set of solutions for an engineering control benchmark, all of them non-dominated and pareto-optimal. The obtained results shows the viability of this approach to give a higher degree of flexibility to the control engineer at the decision making stage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation (3), 263–282 (2002)Google Scholar
  3. 3.
    Herrero, J.M., Martínez, M., Sanchis, J., Blasco, X.: Well-distributed pareto front by using the epsilon-moga evolutionary algorithm. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 292–299. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Hernández-Días, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Molina, J.: Pareto-adaptive ε-dominance. Evolutionary Computation 15(4), 493–517 (2007)CrossRefGoogle Scholar
  5. 5.
    Storn, R.: Sci: Differential evolution research: Trends and open questions. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 1–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Huang, V.L., Qin, A.K., Deb, K., Zitzler, E., Suganthan, P.N., Liang, J.J., Preuss, M., Huband, S.: Problem definitions for performance assessment on multi-objective optimization algorithms. Technical report, Nanyang Technological University, Singapore (2007)Google Scholar
  7. 7.
    Kukkonen, S., Lampinen, J.: Performance assesment of generalized differential evolution 3 (gd3) with a given set of problems. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007), September 2007, pp. 3593–3600 (2007)Google Scholar
  8. 8.
    Huang, V.L., Qin, A.K., Suganthan, P.N., Tasgetiren, M.F.: Multi-objective optimization based on self-adaptive differential evolution algorithm. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007), September 2007, pp. 3601–3608 (2007)Google Scholar
  9. 9.
    Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Differential evolution for multiobjective optimization with self adaptation. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007), September 2007, pp. 3617–3624 (2007)Google Scholar
  10. 10.
    Zielinski, K., Laur, R.: Differential evolution with adaptive parameter setting for multi-objective optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007), September 2007, pp. 3585–3592 (2007)Google Scholar
  11. 11.
    García-Sanz, M., Elso, J.: Ampliación del benchmark de diseño de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4(1), 107–110 (2007)Google Scholar
  12. 12.
    García-Sanz, M., Elso, J.: Resultados del benchmark de dise no de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4(4), 117–120 (2007)Google Scholar
  13. 13.
    Reynoso-Meza, G., Blasco, X., Sanchis, J.: Diseño multiobjetivo de controladores pid para el benchmark de control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial 6(4), 93–103 (2009)Google Scholar
  14. 14.
    Gu, D.W., Petkov, P.H., Konstantinov, M.M.: Robust control design with Matlab. Springer, Heidelberg (2005)MATHGoogle Scholar
  15. 15.
    Blasco, X., Herrero, J.M., Sanchis, J., Martínez, M.: A new graphical visualization of n-dimensional pareto front for decision-making in multiobjective optimization. Information Sciences 178(20), 3908–3924 (2008)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gilberto Reynoso-Meza
    • 1
  • Javier Sanchis
    • 1
  • Xavier Blasco
    • 1
  • Miguel Martínez
    • 1
  1. 1.Instituto Universitario de Automática e Informática IndustrialUniversidad Politécnica de ValenciaValenciaEspaña

Personalised recommendations