Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization

  • Ka-Chun Wong
  • Kwong-Sak Leung
  • Man-Hon Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


To explore the effect of spatial locality, crowding differential evolution is incorporated with spatial locality for multimodal optimization. Instead of random trial vector generations, it takes advantages of spatial locality to generate fitter trial vectors. Experiments were conducted to compare the proposed algorithm (CrowdingDE-L) with the state-of-the-art algorithms. Further experiments were also conducted on a real world problem. The experimental results indicate that CrowdingDE-L has a competitive edge over the other algorithms tested.


Genetic Algorithm Evolutionary Algorithm Spatial Locality Differential Evolution Performance Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)CrossRefGoogle Scholar
  2. 2.
    Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.: Results of the first international contest on evolutionary optimisation (1st ICEO). In: Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, May 1996, pp. 611–615 (1996)Google Scholar
  3. 3.
    De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor (1975); University Microfilms No. 76-9381Google Scholar
  4. 4.
    De Jong, K.A.: Evolutionary Computation. A Unified Approach. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  5. 5.
    Denning, P.J.: The locality principle. Commun. ACM 48(7), 19–24 (2005)CrossRefGoogle Scholar
  6. 6.
    Feoktistov, V.: Differential Evolution - In Search of Solutions. Springer Optimization and Its Applications, vol. 5. Springer-Verlag New York, Inc., Secaucus (2006)zbMATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar
  8. 8.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms and their application, pp. 41–49. L. Erlbaum Associates Inc., Hillsdale (1987)Google Scholar
  9. 9.
    Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  10. 10.
    Li, X.: Efficient differential evolution using speciation for multimodal function optimization. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 873–880. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Lung, R.I., Chira, C., Dumitrescu, D.: An agent-based collaborative evolutionary model for multimodal optimization. In: GECCO 2008: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation, pp. 1969–1976. ACM, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)zbMATHGoogle Scholar
  13. 13.
    Qing, L., Gang, W., Qiuping, W.: Restricted evolution based multimodal function optimization in holographic grating design. In: The 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, September 2005, vol. 1, pp. 789–794 (2005)Google Scholar
  14. 14.
    Qing, L., Gang, W., Zaiyue, Y., Qiuping, W.: Crowding clustering genetic algorithm for multimodal function optimization. Appl. Soft Comput. 8(1), 88–95 (2008)CrossRefGoogle Scholar
  15. 15.
    Rogers, A., Pingali, K.: Process decomposition through locality of reference. SIGPLAN Not. 24(7), 69–80 (1989)CrossRefGoogle Scholar
  16. 16.
    Shang, Y.W., Qiu, Y.H.: A note on the extended rosenbrock function. Evol. Comput. 14(1), 119–126 (2006)CrossRefGoogle Scholar
  17. 17.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997), zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Congress on Evolutionary Computation, CEC 2004, June 2004, vol. 2, pp. 1382–1389 (2004)Google Scholar
  19. 19.
    Wong, K.C., Leung, K.S., Wong, M.H.: An evolutionary algorithm with species-specific explosion for multimodal optimization. In: GECCO 2009: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 923–930. ACM, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ka-Chun Wong
    • 1
  • Kwong-Sak Leung
    • 1
  • Man-Hon Wong
    • 1
  1. 1.Department of Computer Science & EngineeringThe Chinese University of Hong KongChina

Personalised recommendations