Content-Based Image Retrieval of Skin Lesions by Evolutionary Feature Synthesis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


This paper gives an example of evolved features that improve image retrieval performance. A content-based image retrieval system for skin lesion images is presented. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types, are used. Colour and texture features are extracted from lesions. Evolutionary algorithms are used to create composite features that optimise a similarity matching function. Experiments on our database of 533 images are performed and results are compared to those obtained using simple features. The use of the evolved composite features improves the precision by about 7%.


Genetic Programming Texture Feature Colour Space Basal Cell Carcinoma Image Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aurnhammer, M.: Evolving texture features by genetic programming. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 351–358. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Celebi, M.E., Aslandogan, Y.A.: Content-based image retrieval incorporating models of human perception. In: International Conference on Information Technology: Coding and Computing (ITCC 2004), vol. 2, pp. 241–245. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  3. 3.
    Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Computerized Medical Imaging and Graphics 33(2), 148–153 (2009)CrossRefGoogle Scholar
  4. 4.
    Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Computerized Medical Imaging and Graphics 31(6), 362–373 (2007)CrossRefGoogle Scholar
  5. 5.
    Chung, S.M., Wang, Q.: Content-based retrieval and data mining of a skin cancer image database. In: International Conference on Information Technology: Coding and Computing (ITCC 2001), pp. 611–615. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  6. 6.
    Cohen, B.A., Lehmann, C.U.: Dermatlas (2000-2009), dermatology Image Altas,
  7. 7.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 5:1–5:60 (2008)Google Scholar
  8. 8.
    Dermnet: the dermatologist’s image resource (2007), dermatology Image Altas,
  9. 9.
    Dorileo, E.A.G., Frade, M.A.C., Roselino, A.M.F., Rangayyan, R.M., Azevedo-Marques, P.M.: Color image processing and content-based image retrieval techniques for the analysis of dermatological lesions. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2008), August 2008, pp. 1230–1233 (2008)Google Scholar
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  11. 11.
    Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  12. 12.
    Johr, R.H.: Dermoscopy: alternative melanocytic algorithms–the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in Dermatology 20(3), 240–247 (2002)CrossRefGoogle Scholar
  13. 13.
    Lam, B., Ciesielski, V.: Discovery of human-competitive image texture feature extraction programs using genetic programming. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A. (eds.) GECCO 2004, Part II. LNCS, vol. 3103, pp. 1114–1125. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Lee, T.K., Claridge, E.: Predictive power of irregular border shapes for malignant melanomas. Skin Research and Technology 11(1), 1–8 (2005)CrossRefGoogle Scholar
  15. 15.
    Li, R., Bhanu, B., Dong, A.: Feature synthesized EM algorithm for image retrieval. ACM Transaction on Multimedia Computing Communications and Applications 4(2), 10:1–10:24 (2008)Google Scholar
  16. 16.
    Maglogiannis, I., Pavlopoulos, S., Koutsouris, D.: An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Transactions on Information Technology in Biomedicine 9(1), 86–98 (2005)CrossRefGoogle Scholar
  17. 17.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications - clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)CrossRefGoogle Scholar
  18. 18.
    Münzenmayer, C., Wilharm, S., Hornegger, J., Wittenberg, T.: Illumination invariant color texture analysis based on sum- and difference-histograms. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 17–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation. Computer Graphics and Image Processing 13(1), 222–241 (1980)CrossRefGoogle Scholar
  20. 20.
    Rahman, M.M., Desai, B.C., Bhattacharya, P.: Image retrieval-based decision support system for dermatoscopic images. In: IEEE Symposium on Computer-Based Medical Systems, pp. 285–290. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  21. 21.
    Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, prominsign directions, and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  22. 22.
    Schmid-Saugeons, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)CrossRefGoogle Scholar
  23. 23.
    Seidenari, S., Pellacani, G., Pepe, P.: Digital videomicroscopy improves diagnostic accuracy for melanoma. Journal of the American Academy of Dermatology 39(2), 175–181 (1998)CrossRefGoogle Scholar
  24. 24.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  25. 25.
    Unser, M.: Sum and difference histograms for texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 118–125 (1986)CrossRefGoogle Scholar
  26. 26.
    Wollina, U., Burroni, M., Torricelli, R., Gilardi, S., Dell’Eva, G., Helm, C., Bardey, W.: Digital dermoscopy in clinical practise: a three-centre analysis. Skin Research and Technology 13, 133–142 (2007)CrossRefGoogle Scholar
  27. 27.
    Xiang, L., Aldridge, B., Ballerini, L., Fisher, R., Rees, J.: Depth data improves skin lesion segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C., et al. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1100–1107. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of InformaticsUniversity of EdinburghUK
  2. 2.DermatologyUniversity of EdinburghUK

Personalised recommendations