An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction

  • Camelia Chira
  • Dragos Horvath
  • Dumitru Dumitrescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6023)

Abstract

The prediction of a minimum-energy protein structure from its amino-acid sequence represents one of the most important and challenging problems in computational biology. A new evolutionary model based on hill-climbing genetic operators is proposed to address the hydrophobic - polar model of the protein folding problem. The introduced model ensures an efficient exploration of the search space by implementing a problem-specific crossover operator and enforcing an explicit diversification stage during the evolution. The mutation operator engaged in the proposed model refers to the pull-move operation by which a single residue is moved diagonally causing the potential transition of connecting residues in the same direction in order to maintain a valid protein configuration. Both crossover and mutation are applied using a steepest-ascent hill-climbing approach. The resulting evolutionary algorithm with hill-climbing operators is successfully applied to the protein structure prediction problem for a set of difficult bidimensional instances from lattice models.

Keywords

Recombination Macromolecule Romania 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berenboym, I., Avigal, M.: Genetic algorithms with local search optimization for protein structure prediction problem. In: GECCO 2008, pp. 1097–1098 (2008)Google Scholar
  2. 2.
    Cotta, C.: Protein Structure Prediction Using Evolutionary Algorithms Hybridized with Backtracking. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 321–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Crescenzi, P., Goldman, D., Papadimitriou, C.H., Piccolboni, A., Yannakakis, M.: On the Complexity of Protein Folding. Journal of Computational Biology 50, 423–466 (1998)CrossRefGoogle Scholar
  4. 4.
    Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985)CrossRefGoogle Scholar
  5. 5.
    Hart, W., Newman, A.: Protein Structure Prediction with Lattice Models. In: Handbook of Computational Molecular Biology. Chapman & Hall CRC Computer and Information Science Series (2006)Google Scholar
  6. 6.
    Hsu, H.P., Mehra, V., Nadler, W., Grassberger, P.: Growth algorithms for lattice heteropolymers at low temperatures. J. Chem. Phys. 118(1), 444–451 (2003)CrossRefGoogle Scholar
  7. 7.
    Khimasia, M.M., Coveney, P.V.: Protein structure prediction as a hard optimization problem: the genetic algorithm approach. Molecular Simulation 19, 205–226 (1997)CrossRefGoogle Scholar
  8. 8.
    Krasnogor, N., Blackburnem, B., Hirst, J.D., Burke, E.K.: Multimeme algorithms for protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: RECOMB 2003: Proceedings of the seventh annual international conference on Research in computational molecular biology, pp. 188–195. ACM, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)CrossRefGoogle Scholar
  11. 11.
    Shmygelska, A., Hernandez, R., Hoos, H.H.: An Ant Colony Algorithm for the 2D HP Protein Folding Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 40–53. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Song, J., Cheng, J., Zheng, T., Mao, J.: A Novel Genetic Algorithm for HP Model Protein Folding. In: PDCAT 2005: Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications and Technologies, pp. 935–937. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  13. 13.
    Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Molec. Biol. 231, 75–81 (1993)CrossRefGoogle Scholar
  14. 14.
    Zhao, X.: Advances on protein folding simulations based on the lattice HP models with natural computing. Appl. Soft. Comput. 8(2), 1029–1040 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Camelia Chira
    • 1
  • Dragos Horvath
    • 2
  • Dumitru Dumitrescu
    • 1
  1. 1.Babes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Laboratoire d’InfochimieUMR 7177, University StrasbourgFrance

Personalised recommendations