Advertisement

Variable Genetic Operator Search for the Molecular Docking Problem

  • Salma Mesmoudi
  • Jorge Tavares
  • Laetitia Jourdan
  • El-Ghazali Talbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6023)

Abstract

The aim of this work is to present a new hybrid algorithm for the Molecular Docking problem: Variable Genetic Operator Search (VGOS). The proposed method combines an Evolutionary Algorithm with Variable Neighborhood Search. Experimental results show that the algorithm is able to achieve good results, in terms of energy optimization and RMSD values for several molecules when compared with previous approaches. In addition, when hybridized with the L-BFGS local search method it attains very competitive results.

Keywords

Local Search Evolutionary Algorithm Molecular Docking Genetic Operator Variable Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diller, R.M., Verlind, L.M.J.: A critical evaluation of several global optimization algorithms for the purpose of molecular docking. J. Comput. Chem. 20, 1740–1751 (1999)CrossRefGoogle Scholar
  2. 2.
    McConkey, B., Sobelove, V., Edlman, M.: The performance of current methods in ligand-protein docking. Current Science 83, 845–855 (2002)Google Scholar
  3. 3.
    Oduguawa, A., Tiwari, A., Fiorentino, S., Roy, R.: Multi-objective optimisation of the protein-ligand docking problem in drug discovery. In: ACM, GECCO 2006 (2006)Google Scholar
  4. 4.
    Maldenovic, N., Hansen, P.: Variable neighborhood search. Computers in Operations Reasearch 24, 1097–1100 (1997)CrossRefGoogle Scholar
  5. 5.
    Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)Google Scholar
  6. 6.
    Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press (2008)Google Scholar
  7. 7.
    Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of univeral, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)Google Scholar
  8. 8.
    Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)CrossRefGoogle Scholar
  9. 9.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarkian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  10. 10.
    Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The influence of mutation on protein-ligand docking optimization: a locality analysis. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 589–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Tavares, J., Melab, N., Talbi, E.G.: An empirical study on the influence of genetic operators for molecular docking optimization. Technical Report RR-6660, INRIA Lille - Nord Europe research Centre (2008)Google Scholar
  12. 12.
    Tavares, J., Mesmoudi, S., Talbi, E.G.: On the efficiency of local search methods for the molecular docking problem. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 104–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Spring 2003)Google Scholar
  14. 14.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evolutionary Computation 12, 273–302 (2004)CrossRefGoogle Scholar
  15. 15.
    Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)CrossRefGoogle Scholar
  16. 16.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)CrossRefGoogle Scholar
  17. 17.
    Liu, D.C., Nocedal, J.: On the limited memory method for large scale optimization. Mathematical Programming B, 503–528 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Salma Mesmoudi
    • 1
  • Jorge Tavares
    • 2
  • Laetitia Jourdan
    • 3
  • El-Ghazali Talbi
    • 3
  1. 1.Laboratoire d’Informatique de Paris 6ParisFrance
  2. 2.CISUC, Informatics Engineering DepartmentUniversity of CoimbraCoimbraPortugal
  3. 3.INRIA Lille - Nord Europe Research CentreVilleneuve d’AscqFrance

Personalised recommendations