Multilevel Cellular Automata as a Tool for Studying Bioinformatic Processes

  • Paulien HogewegEmail author
Part of the Understanding Complex Systems book series (UCS)


The signature feature of Cellular Automata is the realization that “simple rules can give rise to complex behavior”. In particular how fixed “rock-bottom” simple rules can give rise to multiple levels of organization. Here we describe Multilevel Cellular Automata, in which the microscopic entities (states) and their transition rules themselves are adjusted by the mesoscale patterns that they themselves generate. Thus we study the feedback of higher levels of organization on the lower levels. Such an approach is preeminently important for studying bioinformatic systems. We will here focus on an evolutionary approach to formalize such Multilevel Cellular Automata, and review examples of studies that use them.


Cellular Automaton Cellular Automaton Transition Rule Spiral Wave Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. de Boer, P. Hogeweg, The role of speciation in spatial coevolutionary function approximation. In Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, (2007) pp. 2437–2441
  2. 2.
    M.C. Boerlijst, P. Hogeweg, Selfstructuring and selection: Spiral waves as a substrate for prebiotic evolution, ed. by C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen, Artificial Life II (Addison Wesley, 1991), pp. 255–276Google Scholar
  3. 3.
    M.C. Boerlijst, P. Hogeweg, Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Physica D, 48(1), 17–28 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    K.C. Clarke, S. Hoppen, L. Gaydos, A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plann. B 24, 247–262 (1997)CrossRefGoogle Scholar
  5. 5.
    J.P. Crutchfield, M. Mitchell, The evolution of emergent computation. Proc. Natl. Acad. Sci. 92(23), 10742–10746 (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    T. Dobzhansky, Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach., 35, 125–129 (1973)CrossRefGoogle Scholar
  7. 7.
    J.A. Glazier, A. Balter, N.J. Poplawski, II. 1 Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg Model. Single-Cell-Based Models in Biology and Medicine (Birkhauser Verlag, Basel/Switzerland, 2007), p. 79Google Scholar
  8. 8.
    J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phy. Rev. E 47(3), 2128–2154 (1993)CrossRefGoogle Scholar
  9. 9.
    J.E. Hanson, J.P. Crutchfield, Computational mechanics of cellular automata: An example. Physica D, 103(1–4), 169–189 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)CrossRefGoogle Scholar
  11. 11.
    P. Hogeweg, Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27(1), 81–100, 1988CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    P. Hogeweg, Multilevel evolution: replicators and the evolution of diversity. Physica D 75(1–3), 275–291 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    P. Hogeweg, On searching generic properties of non generic phenomena: An approach to bioinformatic theory formation. In Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life, MIT Press, Cambridge, MA (1998), p. 286Google Scholar
  14. 14.
    P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203, 317–333 (2000)CrossRefGoogle Scholar
  15. 15.
    P. Hogeweg, From population dynamics to ecoinformatics: Ecosystems as multilevel information processing systems. Ecol. Inform. 2(2), 103–111 (2007)CrossRefGoogle Scholar
  16. 16.
    J.D. van der Laan, P. Hogeweg, Predator-prey coevolution: Interactions across different timescales. In Proceedings: Biological Sciences, (1995) pp. 35–42Google Scholar
  17. 17.
    A.F.M. Marée, V.A. Grieneisen, P. Hogeweg, II. 2 The cellular potts model and biophysical properties of cells, tissues and morphogenesis. Single-Cell-Based Models in Biology and Medicine, (Birkhauser Verlag, Basel/Switzerland, 2007), p. 107Google Scholar
  18. 18.
    A.F.M. Marée, P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. 98(7), 3879 (2001)CrossRefGoogle Scholar
  19. 19.
    J. von Neumann, A.W. Burks Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, IL, 1966)Google Scholar
  20. 20.
    L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5(4):401–418 (1997)CrossRefGoogle Scholar
  21. 21.
    L. Pagie, P. Hogeweg, Information integration and red queen dynamics in coevolutionary optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, CEC, IEEE Press, (2000), pp. 1260–1267
  22. 22.
    N. Takeuchi, P. Hogeweg, Evolution of complexity in RNA -like replicator systems. Biol. Direct 3, 11 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Zhou, J.M. Carlson, J. Doyle, Mutation, specialization, and hypersensitivity in highly optimized tolerance. Proc. Natl. Acad. Sci. 99(4), 2049 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Biology & Bioinformatics Group, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations