Parallel Cellular Programming for Emergent Computation

  • Domenico Talia
  • Lev Naumov
Part of the Understanding Complex Systems book series (UCS)


In complex systems, global and collective properties cannot be deduced from its simpler components. In fact, global or collective behavior in a complex system emerges from evolution and interaction of many elements. Therefore programming emergent systems needs models, paradigms, and operations that allow for expressing the behavior and interaction of a very large number of single elements.


Cellular Automaton Parallel Machine Cellular Automaton Message Passing Interface Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Neumann, Theory of Self-Reproducing Automata, ed. by A. W. Burks (University of Illinois Press, Urbana, IL, 1966)Google Scholar
  2. 2.
    S. Ulam, Random Processes and Transformations / Proceedings of the International Congress of Mathematicians, vol. 2 (American Mathematical Society Providence, RI 1952).Google Scholar
  3. 3.
    K. Zuse, Calculating Space. (Massachusetts Institute of Technology Technical Translation AZT-70-164-GEMIT (Project MAC)).(MIT Cambridge, MA, 1970)Google Scholar
  4. 4.
    N. Wiener, A. Rosenbleuth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements,specifically in cardiac muscle. Archi. Insti. Cardiol. Mex.16, 202–265 (1946)Google Scholar
  5. 5.
    P.M.A. Sloot, A.G. Hoekstra, Modeling Dynamic Systems with Cellular Automata, Chapter 21. ed. by P.A. Fishwick, Handbook of Dynamic System Modeling.(Chapman & Hall/CRC, London/Boca Raton, FL, 2007)Google Scholar
  6. 6.
    E. Houstis, E. Gallopoulos, J. Bramley, J.R. Rice, Problem-solving environments for computational science. IEEE Comput. Sci. Eng. 4, 18–21 (1997)CrossRefGoogle Scholar
  7. 7.
    E. Gallopoulos, E. Houstis, J.R. Rice, Computer as Thinker/Doer: Problem-solving environments for computational science. IEEE Comput. Sci. Eng. 1, 11–23 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Abrams, D. Allison, D. Kafura, C. Ribbens, M.B. Rosson, C. Shaffer, L. Watson, PSE Research at Virginia Tech: An Overview. Technical Report: TR-98-21. (Virginia Polytechnic Institute & StateUniversity, Blacksburg, VA, 1998)Google Scholar
  9. 9.
    D.W. Walker, M. Li, O.F. Rana, M.S. Shields, Y. Huang, The software architecture of a distributed problem-solving environment. Concur. Pract. Exp. 12, 1455–1480 (2000)CrossRefGoogle Scholar
  10. 10.
    D.E. Knuth, Literate programming. Center of the Study of Language and Information. (Stanford, CA 1992)Google Scholar
  11. 11.
    E. Gallopoulos, E.N. Houstis, J.R. Rice, Future Research Directions in Problem Solving Environments for Computational Science: Report of a Workshop on ResearchDirections in Integrating Numerical Analysis, Symbolic Computing,Computational Geometry, and Artificial Intelligence forComputational Science. Technical Report 1259. Center forSupercomputing Research and Development. (University of Illinois,Urbana-Champaign, IL, 1992)Google Scholar
  12. 12.
    W. Schroeder, K. Martin, B. Lorensen, Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. (Kitware, New York, NY, 2006)Google Scholar
  13. 13.
    T. Worsch, Programming Environments for Cellular Automata. Proceedings of 2nd Conference on CA in Research and Industry (ACRI 96) (Springer, Heidelberg, 1996)Google Scholar
  14. 14.
    L. Naumov, Generalized coordinates introduction method and a tool for computational experiments software design automation, basedon cellular automata. PhD Thesis, SPbSU ITMO, Saint-Petersburg, 2007Google Scholar
  15. 15.
    I. Blecic, A. Cecchini, G. Trunfio, A generalized rapid development environment for cellular automata based simulations. Cellular Automata: 6thInternational Conference on Cellular Automata for Research andIndustry (ACRI-2004). (Springer, Heidelberg, 2004) pp. 851–860Google Scholar
  16. 16.
    T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment For Modeling. (MIT Press, Cambridge, MA, 1987)Google Scholar
  17. 17.
    N. Margolus, CAM-8: A Computer Architecture Based on Celluar Automata. Physics of Computation Seminar (MIT, Cambridge, MA, 1993)Google Scholar
  18. 18.
    M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, D. Talia, A parallel cellular automata environment on multicomputers for computational science. Parallel Comput. 21, 803–823 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    G. Spezzano, D. Talia, CARPET: a programming language for parallel cellular processing. Proceedings 2nd European School on PPE for HPC. (Alpe d’Huez, France, 1996) pp. 71–74Google Scholar
  20. 20.
    G. Spezzano, D. Talia, A high-level cellular programming model for massively parallel processing. 2nd International Workshop on High-LevelProgramming Models and Supportive Environments (HIPS97). IEEEComputer Society Press, LOS Alamitos, CA, pp. 55–63Google Scholar
  21. 21.
    L. Naumov, CAME&L – Cellular Automata Modeling Environment & Library. Cellular Automata: 6th International Conference onCellular Automata for Research and Industry (ACRI-2004). (Springer,Heidelberg, 2004) pp. 735–744Google Scholar
  22. 22.
    A. Sottoriva, J.J.C. Verhoeff, T. Borowski, S.K. McWeeney, P.M.A. Sloot, L. Vermeulen, Modelling cancer stem cell driven tumor growth reveals invasive morphology and increased phenotypical heterogeneity.Cancer Res. 70, 46–56Google Scholar
  23. 23.
    CAMEL Laboratory – Accessed date 23 Feb 2005
  24. 24.
    G. Spezzano, D. Talia CAMELot: A parallel cellular environment for modelling complexity. AI*IA Notizie 2, 9–15 (2001)Google Scholar
  25. 25.
    J.D. Eckart, A cellular automata simulation system: Version 2.0. ACM SIGPLAN Notices 27(8), 99–106 (1992)CrossRefGoogle Scholar
  26. 26.
    U. Freiwald, J.R. Weimar, JCASim a Java system for simulating cellular automata. Theoretical and Proctical Issues on Cellular Automata (ACRI 2000). (Springer, Heidelberg, 2001) pp. 47–54Google Scholar
  27. 27.
    Mirek’s Cellebration – Accessed date 27 Apr 2010
  28. 28.
    M. Ifrim, Contribution to ParCeL-6 Project: Design of Algorithms Mixing MemorySharing and Message Passing Paradigms for DSM and ClusterProgramming, 2005Google Scholar
  29. 29.
    O. Menard, S. Vialle, H. Frezza-Buet, Making cortically-inspired sensorimotor control realistic for robotics: Design of an extended parallel cellularprogramming model. In International Conference on Advancesin Intelligent Systems - Theory and Applications. (IEEE ComputerSociety, Luxembourg, 2004)Google Scholar
  30. 30.
    T. Bach, T. Toffoli, SIMP, a laboratory for cellular automata and lattice gas experiments. International Conference on Complex Systems,(Boston, MA, 2004)Google Scholar
  31. 31.
    T. Toffoli, T. Bach, A common language for “Programmable Matter” (Cellular Automata and All That). Bull. Ital. Assoc. Artif. Intell., 2, 23–31 (2001)Google Scholar
  32. 32.
    H. Chou, W. Huang, J.A. Reggia, The trend cellular automata programming environment. Simulation 78(2), 59–75 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    C. Hochberger, R. Hoffmann, CDL – a language for cellular processing. Proceedings of the 2nd International Conference on Massively ParallelComputing Systems, IEEE, Ischia. pp. 41–46 (1996)Google Scholar
  34. 34.
    L. Naumov, Generalized Coordinates for Cellular Automata Grids. Computational Science – ICCS 2003. Part 2. (Springer, Heidelberg, 2003) pp. 869–878Google Scholar
  35. 35.
    H. Sagan, Space-Filling Curves. (Springer, Heidelberg, 1994)CrossRefGoogle Scholar
  36. 36.
    D. Talia, Cellular processing tools for high-performance simulation.Computer 33(9), 44–52 (2000)Google Scholar
  37. 37.
    B.L. Chamberlain, S-E. Choi, S.J. Deitz, L. Snyder, The high-levelparallel language ZPL improves productivity and performance.In: Proceedings of the IEEE International Workshop onProductivity and Performance in High-End Computing (2004), MadridGoogle Scholar
  38. 38.
    G. Spezzano, D. Talia, Programming cellular automata forcomputational science on parallel computers. Future Gen. Comput.Syst. 16(2–3), 203–216 (1999)CrossRefGoogle Scholar
  39. 39.
    J.M. Greenberg, S.P. Hastings, Spatial patterns for discrete modelsof diffusion in excitable media. SIAM J. Appl. Math. 34, 515–523 (1978)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.DEIS, University of CalabriaCalabriaItaly
  2. 2.Computational Science Group, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations