Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations

  • Haralambos HatzikirouEmail author
  • Andreas Deutsch
Part of the Understanding Complex Systems book series (UCS)


Biological organisms are complex systems characterized by collective behavior emerging out of the interaction of a large number of components (molecules and cells). In complex systems, even if the basic and local interactions are perfectly known, it is possible that the global (collective) behavior obeys new laws that are not obviously extrapolated from the individual properties. Only an understanding of the dynamics of collective effects at the molecular, and cellular scale allows answers to biological key questions such as: what enables ensembles of molecules to organize themselves into cells? How do ensembles of cells create tissues and whole organisms? Key to solving these problems is the design and analysis of appropriate mathematical models for spatio-temporal pattern formation.


Diffusion Tensor Image Cellular Automaton Cellular Automaton Node Density Lattice Boltzmann 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.J. Alexander, I.Edrei, P.L. Garrido, J.L. Lebowitz, Phase transitions in a probabilistic cellular automaton: growth kinetics and critical properties. J. Statist. Phys. 68(3/4), 497–514, (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    A.R. Anderson, A.M. Weaver, P.T. Cummings, V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915, (2006)CrossRefGoogle Scholar
  3. 3.
    D. Basanta, H. Hatzikirou, A. Deutsch, The emergence of invasiveness in tumours: A game theoretic approach. Eur. Phys. J. B 63, 393–397, (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    D. Basanta, M. Simon, H. Hatzikirou, A. Deutsch, An evolutionary game theory perspective elucidates the role of glycolysis in tumour invasion. Cell Prolif. 41, 980–987, (2008)CrossRefGoogle Scholar
  5. 5.
    R.D. Benguria, M.C. Depassier, V. Mendez, Propagation of fronts of a reaction-convection-diffusion equation. Phys. Rev. E 69, 031106, (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Bray, Cell Movements (Garland Publishing, New York, 1992)Google Scholar
  7. 7.
    H.P. Breuer, W. Huber, F. Petruccione, Fluctuation effects on wave propagation in a reaction-diffusion process. Phys. D 73, 259, (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    A. Bru, S. Albertos, J.L. Subiza, J. Lopez Garcia-Asenjo, I. Bru, The universal dynamics of tumor growth. Bioph. J. 85, 2948–2961, (2003)CrossRefGoogle Scholar
  9. 9.
    I. Brunet, B. Derrida Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56(3), 2597–2604, (1997)CrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Brunet, B. Derrida Effect of microscopic noise in front propagation. J. Stat. Phys. 103(1/2), 269–282, (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    H. Bussemaker, Analysis of a pattern forming lattice gas automaton: Mean field theory and beyond. Phys. Rev. E 53(4), 1644–1661, (1996)Google Scholar
  12. 12.
    S.B. Carter, Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208(5016), 1183–1187, (1965)CrossRefGoogle Scholar
  13. 13.
    B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    E. Cohen, D. Kessler, H. Levine, Fluctuation-regularized front propagation dynamics in reaction-diffusion systems. Phys. Rev. Lett. 94, 158302, (2005)CrossRefGoogle Scholar
  15. 15.
    A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation (Birkhäuser, Basel 2005)zbMATHGoogle Scholar
  16. 16.
    R.B. Dickinson, R.T. Tranquillo, A stochastic model for cell random motility and haptotaxis based on adhesion receptor fuctuations. J. Math. Biol. 31, 563–600, (1993).CrossRefzbMATHGoogle Scholar
  17. 17.
    G.D. Doolen, Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, New York, 1990)zbMATHGoogle Scholar
  18. 18.
    D. Drasdo, S. Höhme, Individual-based approaches to birth and death in avascular tumors. Math. Comp. Model. 37, 1163–1175, (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell. Biol. 16(1), 14–23, (2004)CrossRefGoogle Scholar
  20. 20.
    U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet, Lattice gas hydrodynamics in two and three dimensions. Compl. Syst. 1, 649–707, (1987)zbMATHMathSciNetGoogle Scholar
  21. 21.
    H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339, (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    H. Hatzikirou, A. Deutsch, Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr. Top. Dev. Biol. 81, 401–434, (2008)CrossRefGoogle Scholar
  23. 23.
    A. Lesne, Discrete vs continuous controversy in physics. Math. Struct. Comp. Sc. 17(2), 185–223, (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    J.B. McCarthy, L.T. Furcht, Laminin and fibronectin promote the haptotactic migration of b16 mouse melanoma cells. J. Cell Biol. 98(4), 1474–1480, (1984)CrossRefGoogle Scholar
  25. 25.
    H. Meinhardt, Models of Biological Pattern Formation (Academic New York, 1982)Google Scholar
  26. 26.
    J. Murray, Mathematical Biology I: An Introduction (Springer, Heidelberg 2001)Google Scholar
  27. 27.
    S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A. F. Horwitz, Integrin-ligand binding governs cell-substratum adhesiveness. Nature 388(6638), 210, (1997)CrossRefGoogle Scholar
  28. 28.
    D.H. Rothman, S. Zaleski, Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow. Rev. Mod. Phys. 66(4), 1417–1479, (1994)CrossRefGoogle Scholar
  29. 29.
    M. Saxton, Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401, (1994)CrossRefGoogle Scholar
  30. 30.
    M.V. Velikanov, R. Kapral, Fluctuation effects on quadratic autocatalysis fronts. J. Chem. Phys. 110, 109–115, (1999)CrossRefGoogle Scholar
  31. 31.
    J. von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, IL, 1966)Google Scholar
  32. 32.
    D.A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer, Heidelberg 2005)Google Scholar
  33. 33.
    S. Wolfram, A New Kind of Science (Wolfram Media, Inc., Champaign, IL 2002)zbMATHGoogle Scholar
  34. 34.
    M.H. Zaman, P. Matsudaira, D.A. Lauffenburger, Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration. Ann. Biomed. Eng. 35(1), 91–100, (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Information Services and High Performance Computing, Technische Universität DresdenDresdenGermany

Personalised recommendations