Pairs of Complementary Unary Languages with “Balanced” Nondeterministic Automata

  • Viliam Geffert
  • Giovanni Pighizzini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6034)

Abstract

For each sufficiently large N, there exists a unary regular language L such that both L and its complement Lc are accepted by unambiguous nondeterministic automata with at most N states while the smallest deterministic automata for these two languages require a superpolynomial number of states, at least \(e^{\Omega(\sqrt[3]{N\cdot\ln^{2}\!N})}\!\) . Actually, L and Lc are accepted by nondeterministic machines sharing the same transition graph, differing only in the distribution of their final states. As a consequence, the gap between the sizes of unary unambiguous self-verifying automata and deterministic automata is also superpolynomial.

Keywords

finite state automata state complexity unary regular languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47, 149–158 (1986); Corrigendum: IBID. 302, 497–498 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ďuriš, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Geffert, V.: Magic numbers in the state hierarchy of finite automata. Information and Computation 205, 1652–1670 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grantham, J.: The largest prime dividing the maximal order of an element of S n. Math. Comp. 64, 407–410 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Information and Computation 2, 284–296 (2001)CrossRefGoogle Scholar
  6. 6.
    Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal nfa’s over a unary alphabet. International Journal of Foundations of Computer Science 2, 163–182 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jirásková, G., Pighizzini, G.: Converting self-verifying automata into deterministic automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 458–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Landau, E.: Über die Maximalordnung der Permutation gegebenen Grades. Archiv der Math. und Phys. 3, 92–103 (1903)Google Scholar
  9. 9.
    Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen I. Teubner, Leipzig/Berlin (1909)Google Scholar
  10. 10.
    Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kibernetiki 9, 321–326 (1963) (in Russian); German translation: Über den Vergleich zweier Typen endlicher Quellen, Probleme der Kybernetik 6, 329–335 (1966)Google Scholar
  11. 11.
    Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theoretical Computer Science 330, 349–360 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Computing 30, 1976–1992 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th Ann. IEEE Symp. on Switching and Automata Theory, pp. 188–191 (1971)Google Scholar
  14. 14.
    Miller, W.: The maximum order of an element of a finite symmetric group. American Mathematical Monthly 94, 497–506 (1987)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers C-20(10), 1211–1214 (1971)CrossRefGoogle Scholar
  16. 16.
    Nicolas, J.-L.: Sur l’ordre maximum d’un élément dans le groupe S n des permutations. Acta Aritmetica 14, 315–332 (1968)MATHMathSciNetGoogle Scholar
  17. 17.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ramanujan, S.: A proof of Bertrand’s postulate. Journal of the Indian Mathematical Society 11, 181–182 (1919)Google Scholar
  19. 19.
    Szalay, M.: On the maximal order in S n and \(S_n^*\). Acta Aritmetica 37, 321–331 (1980)MATHMathSciNetGoogle Scholar
  20. 20.
    To, A.W.: Unary finite automata vs. arithmetic progressions. Information Processing Letters 109, 1010–1014 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Viliam Geffert
    • 1
  • Giovanni Pighizzini
    • 2
  1. 1.Department of Computer ScienceP. J. Šafárik UniversityKošiceSlovakia
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations