Advertisement

Supporting Molecular Modeling Workflows within a Grid Services Cloud

  • Martin Koehler
  • Matthias Ruckenbauer
  • Ivan Janciak
  • Siegfried Benkner
  • Hans Lischka
  • Wilfried N. Gansterer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6019)

Abstract

Seamless integrated support for scientific workflows accessing HPC applications, deployed on globally distributed computing resources, has become a major challenge in scientific computing. Scientific workflows in the domain of theoretical chemistry are typically long running, deal with huge files, and have a need for dynamic execution control mechanisms. In this paper, we describe a service-oriented approach based on the Vienna Grid Environment (VGE) that tackles these challenges by seamlessly integrating the Ubuntu Cloud infrastructure supporting the scheduling of dynamic and partitioned workflows. The VGE service environment, which enables the provisioning of HPC applications and data sources as Web services, has been enhanced with support for virtualized workflows. The generic scientific workflow infrastructure is utilized in the context of the CPAMMS project, an interdisciplinary research initiative in the area of computational molecular modeling and simulation. A case study implementing a complex scientific workflow for computing photodynamics of biologically relevant molecules, a simulation of the nonadiabatic dynamics of 2,4-pentadieneiminum-cation (Protonated Schiff Base 3, PSB3) solvated in water, is realized via the presented infrastructure.

Keywords

Cloud Computing Service Cloud Cloud Environment Service Invocation Cloud Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: Jin, H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    EGEE Project: gLite - Ligthweight Middleware for Grid Computing, http://glite.web.cern.ch/glite/
  3. 3.
    Benkner, S., Brandic, I., Engelbrecht, G., Schmidt, R.: VGE - A Service-Oriented Grid Environment for On-Demand Supercomputings. In: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (Grid 2004), Pittsburgh, PA, USA, November 2004. IEEE, Los Alamitos (2004)Google Scholar
  4. 4.
    Ruckenbauer, M., Brandic, I., Benkner, S., Gansterer, W., Gervasi, O., Barbatti, M., Lischka, H.: Nonadiabatic Ab Initio Surface-Hopping Dynamics Calculation in a Grid Environment - First Experiences. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 281–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Benkner, S., Engelbrecht, G., Köhler, M., Wöhrer, A.: Virtualizing Scientific Applications and Data Sources as Grid Services. In: Cao, J. (ed.) Cyberinfrastructure Technologies and Applications. Nova Science Publishers, New York (2009)Google Scholar
  6. 6.
    Janciak, I., Kloner, C., Brezany, P.: Workflow Enactment Engine for WSRF-Compliant Services Orchestration. In: The 9th IEEE/ACM International Conference on Grid Computing (2008)Google Scholar
  7. 7.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (2008)Google Scholar
  8. 8.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youse, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Cloud Computing and Applications 2008, CCA 2008 (2008)Google Scholar
  9. 9.
    Hammes-Schiffer, S., Tully, J.: Proton-Transfer in Solution - Molecular-Dynamics With Quantum Transitions. Journal of Chemical Physics 101(6), 4657–4667 (1994)CrossRefGoogle Scholar
  10. 10.
    Migani, A., Robb, M., Olivucci, M.: Relationship between photoisomerization path and intersection space in a retinal chromophore model. Journal of the American Chemical Society 125(9), 2804–2808 (2003)CrossRefGoogle Scholar
  11. 11.
    Barbatti, M., Granucci, G., Persico, M., Ruckenbauer, M., Vazdar, M., Eckert-Maksic, M., Lischka, H.: The on-the-fly surface-hopping program system NEWTON-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. Journal of Photochemistry and Photobiology A-Chemistry 190(2-3), 228–240 (2007)CrossRefGoogle Scholar
  12. 12.
    Lischka, H., Shepard, R., Brown, F., Shavitt, I.: New Implementation of the Graphical Unitary-Group Approach for Multi-Reference Direct Configuration-Interaction Calculations. International Journal of Quantum Chemistry (suppl. 15), 91–100 (1981)Google Scholar
  13. 13.
    Ponder, J., Richards, F.: An Efficient Newton-Like Method for Molecular Mechanics Energy Minimization of Large Molecules. Journal of Computational Chemistry 8(7), 1016–1024 (1987)CrossRefGoogle Scholar
  14. 14.
    Taylor, I., Deelman, E., Gannon, D., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer-Verlag New York, Inc., Secaucus (2007)Google Scholar
  15. 15.
    Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. SIGMOD Rec. 34(3), 44–49 (2005)CrossRefGoogle Scholar
  16. 16.
    Active Endpoints: ActiveBPEL Engine (March 2008), http://www.active-endpoints.com
  17. 17.
    Wolstencroft, K., Oinn, T., Goble, C., Ferris, J., Wroe, C., Lord, P., Glover, K., Stevens, R.: Panoply of utilities in taverna. In: E-SCIENCE 2005: Proceedings of the First International Conference on e-Science and Grid Computing, Washington, DC, USA, pp. 156–162. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Baldridge, K., Bhatia, K., Greenberg, J., Stearn, B., Mock, S.: Gemstone: Grid-enabled molecular science through online networked environments. In: Invited paper: LSGRID Proceedings (2005)Google Scholar
  19. 19.
    Baldridge, K., Greenberg, J., Sudholt, W., Mock, S., Altintas, I., Amoreria, C., Potier, Y., Birnbaum, A., Bhatia, K.: The computational chemistry prototyping environment. In: Special Issue of the Proceedings of the IEEE on Grid Computing (2005)Google Scholar
  20. 20.
    Erwin, D., Snelling, D.: Unicore: A grid computing environment. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, p. 825. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Buyya, R., Venugopal, S.: The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An Overview and Status Report. In: 1st IEEE International Workshop on Grid Economics and Business Models, GECON 2004, Seoul, Korea, April 23, pp. 19–36. IEEE CS, Los Alamitos (2004)CrossRefGoogle Scholar
  22. 22.
    Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the Use of Cloud Computing for Scientific Workflows. In: IEEE Fourth International Conference on eScience (eScience 2008), Indianapolis, USA, December 7-12 (2008)Google Scholar
  23. 23.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K., Livny, M.: Mapping scientific workflows onto the grid. In: Across Grids Conference, Nicosia, Cyprus (2004)Google Scholar
  24. 24.
    Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J., McLaughlin, D., Wilhelmson, R., Graves, S., Ramamurthy, M., Clark, R., Yalda, S., Reed, D., Joseph, E., Chandrasekar, V.: Casa and lead: Adaptive cyberinfrastructure for real-time multiscale weather forecasting. Computer 39(11), 56–64 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Koehler
    • 1
  • Matthias Ruckenbauer
    • 2
    • 3
  • Ivan Janciak
    • 1
  • Siegfried Benkner
    • 1
  • Hans Lischka
    • 3
  • Wilfried N. Gansterer
    • 2
  1. 1.Faculty of Computer Science, Department of Scientific ComputingUniversity of ViennaAustria
  2. 2.Faculty of Computer Science, Research Lab CTAUniversity of ViennaAustria
  3. 3.Institute for Theoretical ChemistryUniversity of ViennaAustria

Personalised recommendations