Advertisement

Accurate Quantum Dynamics on Grid Platforms: Some Effects of Long Range Interactions on the Reactivity of N + N2

  • Sergio Rampino
  • Ernesto Garcia
  • Fernando Pirani
  • Antonio Laganà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6019)

Abstract

The potential energy surface of the N + N2 atom diatom system has been reformulated using the LAGROBO functional form for interpolating ab initio points in the short distance region and using a modified Lennard Jones functional form to model the van der Waals interaction at long range. On the proposed surface extended quantum calculations have been performed using the European Grid platform. The values of the calculated thermal rate coefficients fairly reproduce the experimental results.

Keywords

Reactive scattering quantum dynamics and kinetics nitrogen exchange reaction state specific reaction probabilities thermal rate coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armenise, I., Capitelli, M., Celiberto, R., Colonna, G., Gorse, C., Laganà, A.: The effect of N+N2 collisions on the non-equilibrium vibrational distributions of nitrogen under reentry conditions. Chemical Physics Letters 227, 157–163 (1994)CrossRefGoogle Scholar
  2. 2.
    Armenise, I., Capitelli, M., Garcia, E., Gorse, C., Laganà, A., Longo, S.: Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges. Chemical Physics Letters 200, 597–604 (1992)CrossRefGoogle Scholar
  3. 3.
    Back, R.A., Mui, J.Y.P.: The reactions of active nitrogen with N15O and N\(_2^{15}\). Journal of Physical ChemistryGoogle Scholar
  4. 4.
    Bar-Nun, A., Lifshitz, A.: Kinetics of the homogeneous exchange reaction: 14 − 14N2 + 15 − 15N2 → 2 14 − 15N2. single-pulse shock-tube studies. Journal of Chemical Physics 47, 2878–2888 (1967)CrossRefGoogle Scholar
  5. 5.
    Lyon, R.: Search for the N-N2 exchange reaction. Canadian Journal of Chemistry 50, 1433–1437 (1972)CrossRefGoogle Scholar
  6. 6.
    Wang, D., Stallcop, J.R., Huo, W.M., Dateo, C.E., Schwenke, D.W., Partridge, H.: Quantal study of the exchange reaction for N + N2 using an ab initio potential energy surface. Journal of Chemical Physics 118, 2186–2189 (2003)CrossRefGoogle Scholar
  7. 7.
    Garcia, E., Saracibar, A., Gómez Carrasco, S., Laganà, A.: Modeling the global potential energy surface of the N + N2 reaction from ab initio data. Physical Chemistry Chemical Physics 10, 2552–2558 (2008)CrossRefGoogle Scholar
  8. 8.
    Laganà, A.: A rotating bond order formulation of the atom diatom potential energy surface. Journal of Chemical Physics 95, 2216–2217 (1991)CrossRefGoogle Scholar
  9. 9.
    Laganà, A., Ferraro, G., Garcia, E., Gervasi, O., Ottavi, A.: Potential energy representations in the bond order space. Chemical Physics 168, 341–348 (1992)CrossRefGoogle Scholar
  10. 10.
    Skouteris, D., Castillo, J.F., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Computer Physics Communications 133, 128–135 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    EGEE: Enabling grids for e-science in europe, http://www.eu-egee.org
  12. 12.
    Laganà, A., Riganelli, A., Gervasi, O.: On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Laganà, A., Garcia, E., Ciccarelli, L.: Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms. Journal of Physical Chemistry 91, 312–314 (1987)CrossRefGoogle Scholar
  14. 14.
    Petrongolo, C.: MRD-CI ground state geometry and vertical spectrum of N3. Journal of Molecular Structure 175, 215–220 (1988)CrossRefGoogle Scholar
  15. 15.
    Petrongolo, C.: MRD-CI quartet potential surfaces for the collinear reactions N (\(^4{S}_\mathrm{u}\)) + N2 (\(X^1\Sigma_\mathrm{g}^+\), \(A^3\Sigma_\mathrm{u}^+\), and \(B^3\Pi_\mathrm{g}\)). Journal of Molecular Structure (Teochem) 202, 135–142 (1989)CrossRefGoogle Scholar
  16. 16.
    Garcia, E., Laganà, A.: The largest angle generalization of the rotating bond order potential: the H + H2 and N + N2 reactions. Journal of Chemical Physics 103, 5410–5416 (1995)CrossRefGoogle Scholar
  17. 17.
    Rampino, S., Skouteris, D., Laganà, A., Garcia, E., Saracibar, A.: A comparison of the quantum state-specific efficiency of N + N2 reaction computed on different potential energy surfaces. Physical Chemistry Chemical Physics 11, 1752–1757 (2009)CrossRefGoogle Scholar
  18. 18.
    Stallcop, J.R., Partridge, H., Levin, E.: Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Physical Review A 64, 042722–1–12 (2001)Google Scholar
  19. 19.
    Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by highly resolution scattering data useful for molecular dynamics simulations. Physical Chemistry Chemical Physics 10, 5489–5503 (2008)CrossRefGoogle Scholar
  20. 20.
    Cambi, R., Cappelletti, D., Liuti, G., Pirani, F.: Generalized correlations in terms of polarizability for van der waals interaction potential parameter calculations. Journal of Chemical Physics 95, 1852–1861 (1991)CrossRefGoogle Scholar
  21. 21.
    Pirani, F., Cappelletti, D., Liuti, G.: Range, strength and anisotropy of intermolecular forces in atom-molecule systems: an atom-bond pairwise additivity approach. Chemical Physics Letters 350, 286–296 (2001)CrossRefGoogle Scholar
  22. 22.
    Capitelli, M., Cappelletti, D., Colonna, G., Gorse, C., Laricchiuta, A., Liuti, G., Longo, S., Pirani, F.: On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chemical Physics 338, 62–68 (2007)CrossRefGoogle Scholar
  23. 23.
    Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N2-H2 and N2-N2 complexes. Physical Chemistry Chemical Physics 10, 4281–4293 (2008)CrossRefGoogle Scholar
  24. 24.
    Laganà, A.: Towards a grid based universal molecular simulator. In: Theory of the dynamics of elementary chemical reactions, pp. 363–380. Kluwer, Dordrecht (2004)Google Scholar
  25. 25.
    Schatz, G.C.: Quantum reactive scattering using hyperspherical coordinates: results for H + H2 and Cl + HCl. Chemical Physics Letters 150, 92–98 (1988)CrossRefGoogle Scholar
  26. 26.
    Pack, R.T., Parker, G.A.: Quantum reactive scattering in three dimensions using hyper-spherical (APH) coordinates. theory. Journal of Chemical Physics 87, 3888–3921 (1987)CrossRefGoogle Scholar
  27. 27.
    Bowman, J.M.: Reduced dimensionality theory of quantum reactive scattering. Journal of Physical Chemistry 95, 4960–4968 (1991)CrossRefGoogle Scholar
  28. 28.
    Bowman, J.M.: Approximate time independent methods for polyatomic reactions. Lecture Notes in Chemistry 75, 101–114 (2000)Google Scholar
  29. 29.
    Laganà, A., Faginas Lago, N., Rampino, S., Huarte-Larrañaga, F., Garcia, E.: Thermal rate coefficients in collinear versus bent transition state reactions: the N + N2 case study. Physica Scripta 78, 058116–1–9 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sergio Rampino
    • 1
  • Ernesto Garcia
    • 2
  • Fernando Pirani
    • 1
  • Antonio Laganà
    • 1
  1. 1.Dipartimento di ChimicaUniversità degli Studi di PerugiaPerugiaItalia
  2. 2.Departamento de Quimica FisicaUniversidad del Pais VascoVitoriaEspaña

Personalised recommendations