Optimal and Suboptimal Synchronization Schemes for Ultra-Wideband Systems

  • Dahae Chong
  • Chonghan Song
  • Youngpo Lee
  • Myungsoo Lee
  • Junhwan Kim
  • Seokho Yoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6018)

Abstract

The conventional ultra-wideband (UWB) synchronization schemes could cause poor performance in receiver operations such as demodulation after the synchronization, since unreliable timing information corresponding to low-power multipath components might be transferred to the next stage. To solve this problem, in this paper, we propose novel synchronization schemes for UWB systems. We first derive an optimal scheme based on the maximum likelihood (ML) criterion and then develop a simpler suboptimal scheme. Simulation results show that both proposed schemes provide a better synchronization performance over the conventional scheme.

Keywords

Maximum likelihood (ML) Optimal Suboptimal Synchronization Ultra-wideband (UWB) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Win, M.Z., Scholtz, R.A.: Impulse radio: how it works. IEEE Commun. Lett. 2(2), 36–38 (1998)CrossRefGoogle Scholar
  2. 2.
    Porcino, D., Hirt, W.: Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun. Mag. 41(7), 64–74 (2003)CrossRefGoogle Scholar
  3. 3.
    Yang, L., Giannakis, G.B.: Ultra-wideband communications: an idea whose time has come. IEEE Sig. Process. Mag. 21(6), 26–54 (2004)CrossRefGoogle Scholar
  4. 4.
    Gezici, S., Kobayashi, H., Poor, H.V., Molisch, A.F.: Performance evaluation of impulse radio UWB systems with pulse-based polarity randomization. IEEE Trans. Sig. Process. 53(7), 2537–2549 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Aedudodla, S.R., Vijayakumaran, S., Wong, T.F.: Timing acquisition in ultra-wideband communication systems. IEEE Trans. Veh. Technol. 54(5), 1570–1583 (2005)CrossRefGoogle Scholar
  6. 6.
    Wu, L., Wu, X., Tian, Z.: Asymptotically optimal receivers with noisy template: design and comparison with RAKE. IEEE J. Sel. Areas Commun. 24(4), 808–814 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Homier, E.A., Scholts, R.A.: Rapid acquisition of ultra-wideband signals in the dense multipath channel. In: Proc. IEEE UWBST, Baltimore, MD, pp. 105–109 (2002)Google Scholar
  8. 8.
    Vijayakumaran, S., Wong, T.F.: A search strategy for ultra-wideband signal acquisition. IEEE Trans. Commun. 53(12), 2015–2019 (2005)CrossRefGoogle Scholar
  9. 9.
    Ramachandran, I., Roy, S.: On acquisition of wideband direct-sequence spread spectrum signals. IEEE Trans. Commun. 5(6), 1537–1546 (2006)CrossRefGoogle Scholar
  10. 10.
    Arias-de-Reyna, E., Acha-Catalina, J.J.: Blind and efficient serial search strategy for ultrawideband signal initial acquisition. IEEE Trans. Veh. Technol. 58(6), 3053–3057 (2009)CrossRefGoogle Scholar
  11. 11.
    Molisch, A.F., Foerster, J.R.: Channel models for ultrawideband personal area networks. IEEE Wireless Commun. 10(6), 14–21 (2003)CrossRefGoogle Scholar
  12. 12.
    Molisch, A.F.: Ultrawideband propagation channels - theory, measurement, and modeling. IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dahae Chong
    • 1
  • Chonghan Song
    • 1
  • Youngpo Lee
    • 1
  • Myungsoo Lee
    • 1
  • Junhwan Kim
    • 1
  • Seokho Yoon
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations