Advertisement

Virulence and Pathogenicity of Fungal Pathogens with Special Reference to Candida albicans

  • Mohd Sajjad Ahmad KhanEmail author
  • Iqbal Ahmad
  • Farrukh Aqil
  • Mohd Owais
  • Mohd Shahid
  • Javed Musarrat
Chapter

Abstract

The frequency of severe systemic fungal diseases has increased in the last few decades. The clinical use of broad spectrum antibacterial drugs and immunosuppressive agents after organ transplantation, cancer chemotherapy, and advancements in surgery are associated with increasing risk of fungal infection. Despite the effectiveness of available antifungals in combating such infections, the emergence of drug resistance to antifungals, and problems of toxicity and poor delivery of drugs at the target site in systemic infections, have necessitated a systematic approach to the study of fungal pathogens, host–fungi interactions, and identification of virulence factors. Characterization of virulence factors is expected to improve understanding of fungal pathogenesis and to help explore new drug targets. In this article we discuss the process of fungal infections, virulence factors and pathogenicity of fungal pathogens, with special reference to Candida albicans. Adherence, dimorphism, phenotypic switching, secretion of hydrolytic enzymes, biofilm formation, and ability to adapt at host body temperature are some of the well-known virulence factors among pathogenic fungi and are discussed in relation to C. albicans.

Keywords

Virulence Factor Invasive Fungal Infection Planktonic Cell Phenotypic Switching Yeast Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, De Groot P, MacCallum D, Odds FC, Schafer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol anchored proteases of Candida albicans target proteins necessary for both cellular process and host pathogen interactions. J Biol Chem 281:668–694Google Scholar
  2. Alem MAS, Oteef MDY, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryotic Cell 5:1770–1779PubMedCrossRefGoogle Scholar
  3. Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008PubMedCrossRefGoogle Scholar
  4. Baille GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilm. J Med Microbiol 48:671–679CrossRefGoogle Scholar
  5. Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930PubMedCrossRefGoogle Scholar
  6. Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594PubMedCrossRefGoogle Scholar
  7. Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109PubMedCrossRefGoogle Scholar
  8. Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 157:57–67Google Scholar
  9. Brock M (2009) Fungal metabolism in host niches. Curr Opin Microbiol 12:371–376PubMedCrossRefGoogle Scholar
  10. Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338PubMedCrossRefGoogle Scholar
  11. Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589PubMedCrossRefGoogle Scholar
  12. Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132PubMedCrossRefGoogle Scholar
  13. Casadevall A, Pirofski LA (2001) Host-pathogen interactions: the attributes of virulence. J Infect Dis 184:337–344PubMedCrossRefGoogle Scholar
  14. Celera JA, Claderone R (2001) Signalling and the biology of human fungal pathogens. In: Claderone R, Cihlar R (eds) Fungal pathogenesis: principles and clinical applications. Marcel Dekker, New York, pp 115–137Google Scholar
  15. Chaffin WL, Lopez-Ribot Jl, Casanova M, Gozalbo D, Martinez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function and expression. Microbiol Mol Biol Rev 62:130–180PubMedGoogle Scholar
  16. Chakrabarti A (2005) Microbiology of systemic fungal infection. J Postgrad Med 51(Suppl1):S16–S20PubMedGoogle Scholar
  17. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormik T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol 18:5385–5394CrossRefGoogle Scholar
  18. Chandra J, Patel JD, Li J, Zhou G, Mukherjee PK, McCormick TS et al (2005) Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl Environ Microbiol 71:8795–8801PubMedCrossRefGoogle Scholar
  19. Claderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–336CrossRefGoogle Scholar
  20. Corner BE, Magee PT (1997) Candida pathogenesis: unraveling the threads of infection. Curr Biol 2:R691–R694CrossRefGoogle Scholar
  21. de Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls the gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325PubMedGoogle Scholar
  22. de Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, Schafer W, Cassone A (1999) Evidence that members of aspartyl proteinase gene family, in particular SAP 2, are virulence factors for Candida vaginitis. J Infect Dis 179:201–208PubMedCrossRefGoogle Scholar
  23. Dominic RM, Shenoy S, Baliga S (2007) Candida biofilms in medical devices: evolving trends. Kathmandu Univ Med J 5:431–436Google Scholar
  24. Dos Santos AL, de Carvalno IM, daSilva BA, Portela MB, Alviano CS, de Aroujo Soares RM (2006) Secretion of serine peptidase by a clinical strain of Candida albicans: influence of growth condition and cleavage of human serum proteins and extracellular matrix components. FEMS Immunol Med Microbiol 46:209–220PubMedCrossRefGoogle Scholar
  25. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36PubMedCrossRefGoogle Scholar
  26. Eckert SE, Sheth CC, Muhlschlegel FA (2007) Regulation of morphogenesis in Candia species. In: d’Enfert CH, Hube B (eds) Candida. Comparative and functional genomics. Caister Academic, Norfolk, pp 263–291Google Scholar
  27. Fidel PL Jr, Vanquez JA, Sobel JD (1999) Candida glabrata: a review of epidemiology, pathogenesis and clinical disease with comparison to Candida albicans. Clin Microbiol Rev 12:80–96PubMedGoogle Scholar
  28. Filler SG, Sheppard DC, Edwards JE Jr (2006) Molecular basis of fungal adherence to endothelial and epithelial cells. In: Heitman J, Filler SG, Edwards JE Jr, Mitchell AP (eds) Molecular principles of fungal pathogenesis. ASM, Washington, DC, pp 187–196Google Scholar
  29. Fluckiger U, Marchetti O, Bille J, Eggiman P, Zimmerli S, Imhof A, Garbino J, Ruef C, Pittet D, Tauber M, Glauser M, Calandra T (2006) Treatment options of invasive fungal infections in adults. Swiss Med Wkly 136:447–463PubMedGoogle Scholar
  30. Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143PubMedCrossRefGoogle Scholar
  31. Gow NAR, Brown AJP, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371PubMedCrossRefGoogle Scholar
  32. Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE (2005) Yeast wall protein 1 of Candida albicans. Microbiol 151:1631–1644CrossRefGoogle Scholar
  33. Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiol 150:267–275CrossRefGoogle Scholar
  34. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Ann Rev Phytopathol 46:149–187CrossRefGoogle Scholar
  35. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  36. Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921PubMedGoogle Scholar
  37. Hayens KA, Westerneng TJ (1996) Rapid identification of Candida albicans, C. glabrata, C. parapsilosis and C. krusei by species specific PCR of large subunit ribosomal DNA. J Med Microbiol 44:390–396CrossRefGoogle Scholar
  38. Haynes K (2001) Virulence in Candida species. Trends Microbiol 9:591–596PubMedCrossRefGoogle Scholar
  39. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryotic Cell 5:613–619PubMedCrossRefGoogle Scholar
  40. Hogan LH, Klein BS, Levitz SM (1996) Virulence factors of medically important fungi. Clin Microbiol Rev 9:469–488PubMedGoogle Scholar
  41. Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180PubMedCrossRefGoogle Scholar
  42. Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans AL S3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459PubMedCrossRefGoogle Scholar
  43. Hube B (2004) From commensal to pathogen: stage and tissue specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341PubMedCrossRefGoogle Scholar
  44. Hube B, Naglik J (2001) Candida albicans proteinases resolving the mystery of a gene family. Microbiol 147:1997–2005Google Scholar
  45. Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJ, Gow NA (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2 and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538PubMedGoogle Scholar
  46. Hube B, Ruchel R, Monod M, Sanglard D, Odds FC (1998) Functional aspects of secreted Candida proteinases. Adv Exp Med Biol 436:339–344PubMedCrossRefGoogle Scholar
  47. Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima Y, Edwards JE Jr, Nozawa Y, Ghannoum MA (1995) Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 63:1993–1998PubMedGoogle Scholar
  48. Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G (2004) The Candida albicans CaACE 2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53:969–983PubMedCrossRefGoogle Scholar
  49. Khan ZK, Gyanchandani A (1998) Candidiasis: a review. PINSA 64:1–34Google Scholar
  50. Klein BS, Tebbets B (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10:314–319PubMedCrossRefGoogle Scholar
  51. Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA (2004) The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryotic Cell 3:1062–1065PubMedCrossRefGoogle Scholar
  52. Kuleta JK, Kozik MR, Kozik A (2009) Fungi pathogenic to humans: molecular basis of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56:211–224Google Scholar
  53. Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR (1999) Misexpression of the opaque phase specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67:6652–6662PubMedGoogle Scholar
  54. Latge JP, Calderone R (2002) Host–microbe interactions: fungi Invasive human fungal opportunistic infections. Curr Opin Microbiol 5:355–358PubMedCrossRefGoogle Scholar
  55. Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NAR, Brown AJP, Thomas DY (1996) Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 93:13217–13222PubMedCrossRefGoogle Scholar
  56. Lewis RE, Lo HJ, Raad II, Kontoyiannis DP (2002) Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 46:1153–1155PubMedCrossRefGoogle Scholar
  57. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP (2007) Eap1p, a adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryotic Cell 6:931–939PubMedCrossRefGoogle Scholar
  58. Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735PubMedCrossRefGoogle Scholar
  59. Lopez-Ribot Jl (2005) Candida albicans biofilms: more than filamentation. Curr Biol 15:R453–R455PubMedCrossRefGoogle Scholar
  60. Martin GS, Mnnino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:546–1554Google Scholar
  61. Martinez-Lopez R, Monteoliva L, Diez-Orejas R, Nombela C, Gil C (2004) The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiol 150:3341–3354CrossRefGoogle Scholar
  62. Mendes-Giannini MJS, Da Silva JLM, Da Silva JF, Donofrio FC, Miranda ET, Andreotti PF, Soares CP (2008) Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia 165:237–248PubMedCrossRefGoogle Scholar
  63. Miller MG, Johnson AD (2002) White opaque switching in Candida albicans is controlled by mating type locus homeodomain proteins and allows efficient mating. Cell 110:293–302PubMedCrossRefGoogle Scholar
  64. Molero G, Dies-Oreja R, Navarro-Garcia F, Monteoliva L, Pla J, Gill C, Sanchez-Perez M, Nambela C (1998) Candida albicans: genetics, dimorphism and pathogenicity. Int J Microbiol 1:95–106Google Scholar
  65. Monod M, Zepelin MB (2002) Secreted proteinases and other virulence mechanisms of Candida albicans. Chem Immunol 81:114–128PubMedCrossRefGoogle Scholar
  66. Moore RD, Chaisson RE (1996) Natural history of opportunistic disease in an HIV infected urban clinical cohort. Ann Intern Med 124:633–642PubMedGoogle Scholar
  67. Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH regulated gene PHR1 with an inverted pattern of pH dependent expression. Mol Cell Biol 17:5960–5967PubMedGoogle Scholar
  68. Mulhern SM, Logue ME, Butler G (2006) Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryotic Cell 5:2001–2013PubMedCrossRefGoogle Scholar
  69. Murphy JW (1991) Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol 45:509–538PubMedCrossRefGoogle Scholar
  70. Naglik JR, Challacombe SJ, Hube B (2003) Candia albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428PubMedCrossRefGoogle Scholar
  71. Naglik JR, Albercht A, Bader O, Hube B (2004) Candida albicans proteinases and host pathogen interactions. Cellular Microbiol 6:915–926CrossRefGoogle Scholar
  72. Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, Schaller M, Hube B (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiol 154:3266–3280CrossRefGoogle Scholar
  73. Nobile CJ, Mitchell AP (2005) Regulation of cell surface genes and biofilm formation by the Candida albicans transcription factor Bcr1. Curr Biol 15:1150–1155PubMedCrossRefGoogle Scholar
  74. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006a) Critical role of Bcr1- dependent adhesins in Candida albicans biofilms formation in vitro and in vivo. PLoS Pathog 2:636–649CrossRefGoogle Scholar
  75. Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006b) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic Cell 5:1604–1610PubMedCrossRefGoogle Scholar
  76. Noffiz CS, Liedschulte V, Lengeler K, Ernst JF (2008) Functional mapping of the Candida albicans Efg1 regulator. Eukaryotic Cell 7:881–893CrossRefGoogle Scholar
  77. Norice CT, Smith FJ Jr, Solis N, Filler SG, Mitchell AP (2007) Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot Cell 6:2046–2055PubMedCrossRefGoogle Scholar
  78. Odds FC (1988) Candida and Candidiasis: a review and bibliography. Bailliere Tindall, London, UK, p 67Google Scholar
  79. Odds FC, Gow NAR, Brown AJP (2006) Toward a molecular understanding of Candida albicans virulence. In: Heitman J, Filler SG, Edwards JE Jr, Mitchell AP (eds) Molecular principles of fungal pathogenesis. ASM, Washington, DC, pp 305–319Google Scholar
  80. Pfaller MA, Diekema DJ (2002) Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J Clin Microbiol 40:3551–3557PubMedCrossRefGoogle Scholar
  81. Pommerville JC (2004) Alcamo’s fundamentals of microbiology, 7th edn. Jones and Bartlett, Sudbury, MAGoogle Scholar
  82. Ramage G, Saville SP, Wickes BL, Lopez-Ribot Jl (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum sensing molecule. Appl Environ Microbiol 68:5459–5463PubMedCrossRefGoogle Scholar
  83. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryotic Cell 4:633–638PubMedCrossRefGoogle Scholar
  84. Ramage G, Ghannoum MA, Lopez-Ribot JL (2006) Fungal biofilms: agents of disease and drug resistance. In: Hetman J, Filler SG, Edwards JE Jr, Mitchell AP (eds) Molecular principles of fungal pathogenesis. ASM, Washington, DC, pp 177–185Google Scholar
  85. Rappleye CA, Goldman WE (2006) Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60:281–303PubMedCrossRefGoogle Scholar
  86. Reedy JL, Bastidas RJ, Heitman J (2007) The virulence of human pathogenic fungi: notes from the South of France. Cell Host Microbe 2:77–83PubMedCrossRefGoogle Scholar
  87. Ribaud P, Chastang C, Latge JP, BAffroy-Lafitte C, Parquet N, Devergie A, Esperou H, Selini F, Rocha V, Derouin F, Socie G, Gluckman E (1999) Outcome and prognostic factors of invasive aspergillosis after allogenic bone marrow transplantation. Clin Infect Dis 28:322–330PubMedCrossRefGoogle Scholar
  88. Richard ML, Nobile CJ, Bruno VM, Mitchell AP (2005) Candida albicans biofilm-defective mutants. Eukaryote Cell 4:1493–1502CrossRefGoogle Scholar
  89. Richardson MD (2005) Changing pattern and trends in systemic fungal infections. J Antimicrob Chemother 56:5–11CrossRefGoogle Scholar
  90. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29PubMedCrossRefGoogle Scholar
  91. Rupp S (2007) Interactions of the fungal pathogen Candida albicans with the host. Future Microbiol 2:141–151PubMedCrossRefGoogle Scholar
  92. Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613PubMedGoogle Scholar
  93. Schaller M, Hube B, Ollert MW, Schafer W, Borg-Von ZM, Thoma-Greber E, Korting HC (1999) In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV infected patients. J Invest Dermatol 112:383–386PubMedCrossRefGoogle Scholar
  94. Senet JM (1998) Candida adherence pheneomenon, from commensalisms to pathogenicity. Int Microbiol 1:117–122PubMedGoogle Scholar
  95. Seneviratne CJ, Jin L, Samaranayke LP (2007) Biofilm lifestyle of Candida: a mini review. Oral Dis 14:582–590CrossRefGoogle Scholar
  96. Soll DR (1992) High frequency switching in Candida albicans. Clin Microbiol Rev 5:183–203PubMedGoogle Scholar
  97. Soll DR (1997) Gene regulation during high frequency switching in Candida albicans. Microbiol 143:279–288CrossRefGoogle Scholar
  98. Soll DR (2002a) Phenotypic switching. In: Claderone R (ed) Candida and candidiasis. ASM, Washington, DC, pp 123–142Google Scholar
  99. Soll DR (2002b) Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop 81:101–110PubMedCrossRefGoogle Scholar
  100. Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538PubMedCrossRefGoogle Scholar
  101. Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhauser J (2002) Transcriptional regulators cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 70:921–927PubMedCrossRefGoogle Scholar
  102. Sullivan D, Moran G, Coleman D (2005) Fungal diseases of humans. In: Kavanagh K (ed) Fungi: biology and applications. Wiley, Chichester, UK, pp 171–190CrossRefGoogle Scholar
  103. Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Kohler GA (2006) Inactivation of the phospholipase B gene PLB5 in wild type Candida albicans reduces cell associated phospholiupase A2 activity and attenuates virulence. Int J Med Microbiol 296:405–420PubMedCrossRefGoogle Scholar
  104. Tomee JFCH, Kauffman HF (2000) Putative virulence factors of Aspergillus fumigatus. Clin Exp Allergy 30:476–484PubMedCrossRefGoogle Scholar
  105. Wanner A, Salathe M, O’Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902PubMedGoogle Scholar
  106. Watamoto T, Samaranayake LP, Jayatilake JAMS, Egusa H, Yatani H, Seneviratne CJ (2009) Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Int J Antimicrob Agents 34:333–339PubMedCrossRefGoogle Scholar
  107. Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8:240–259PubMedGoogle Scholar
  108. Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley and Klein’s microbiology, 7th edn. McGraw Hill, SingaporeGoogle Scholar
  109. Yang YL (2003) Virulence factors of Candida species. J Microbiol Immunol Infect 36:223–228PubMedGoogle Scholar
  110. Zhao X, Daniels KJ, Oh SH, Green CB, Veater KM, Soll DR, Hoyer LL (2006) Candida albicans Als3p is required for wild type biofilm formation on silicone elastomer surface. Microbiology 152:2287–2299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mohd Sajjad Ahmad Khan
    • 1
    Email author
  • Iqbal Ahmad
    • 1
  • Farrukh Aqil
    • 2
  • Mohd Owais
    • 3
  • Mohd Shahid
    • 4
  • Javed Musarrat
    • 5
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA
  3. 3.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  4. 4.Department of Microbiology, JN Medical CollegeAligarh Muslim UniversityAligarhIndia
  5. 5.DNA Research Chair, Department of ZoologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations