Advertisement

Agent Based Evacuation Model with Car-Following Parameters by Means of Cellular Automata

  • Kohei Arai
  • Tri Harsono
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

An agent based evacuation model with car-following parameters for micro traffic by means of cellular automata is proposed. The model features smart drivers who have a concern the distance between the driver and the surrounding cars. Such drivers are called agents. Agents lead the other cars not only in an ordinary case but also in the case of evacuations. We put the smart drivers and the agent drivers into the car-following parameters of traffic model. We applied it in the case of evacuation. Experimental simulation results show the effectiveness of reducing the evacuation time by the agents. It also is found the effectiveness increases in accordance with increasing of the number of agents.

Keywords

Agent based traffic model micro traffic model car-following smart driver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal Physics I, France 2, 2221–2229 (1992)CrossRefGoogle Scholar
  2. 2.
    Nagel, K.: Particle hopping models and traffic flow theory. Phys. Rev. E 53, 4655–4672 (1996)CrossRefGoogle Scholar
  3. 3.
    Sugiman, T., Misumi, J.: Development of a new evacuation method for emergencies: Control of collective behavior by emergent small groups. J. Appl. Psychol. 73, 3–10 (1988)CrossRefGoogle Scholar
  4. 4.
    Stern, E., Sinuany-Stern, Z.: A behavioral-based simulation model for urban evacuation. Pap. Reg. Sci. Assoc. 66, 87–103 (1989)CrossRefGoogle Scholar
  5. 5.
    Sheffi, Y., Mahmassani, H., Powell, W.: A transportation network evacuation model. Transport Res. A-Pol. 16, 209–218 (1982)CrossRefGoogle Scholar
  6. 6.
    Hobeika, A.G., Jamei, B.: MASSVAC: A model for calculating evacuation times under natural disaster. Emerg. Plann, Simulation Series 15, 23–28 (1985)Google Scholar
  7. 7.
    Cova, T.J., Church, R.L.: Modeling community evacuation vulnerability using GIS. International Journal Geographic Information Science 11, 763–784 (1997)CrossRefGoogle Scholar
  8. 8.
    Deadman, P.J.: Modeling individual behavior and group performance in an intelligent agent-based simulation of the tragedy of the commons. J. Environ. Manage. 56, 159–172 (1999)CrossRefGoogle Scholar
  9. 9.
    Teodorovic, D.A.: Transport modeling by multi-agent systems: A swarm intelligence approach. Transport Plan. Techn. 26, 289–312 (2003)CrossRefGoogle Scholar
  10. 10.
    Church, R.L., Sexton, R.M.: Modeling small area evacuation: Can existing transportation infrastructure impede public safety? Caltrans Testbed Center for Interoperability Task Order 3021Report, Vehicle Intelligence & Transportation Analysis Laboratory, University of California, Santa BarbaraGoogle Scholar
  11. 11.
    Cova, T.J., Johnson, J.P.: Micro simulation of neighborhood evacuations in the urban-wild land interface. Environ. Plann. A 34, 2211–2229 (2002)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Zhan, F.B.: Agent-based modeling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies. Journal of the Operational Research Society 59, 25–33 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics Reports 419, 1–64 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)CrossRefGoogle Scholar
  15. 15.
    Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)CrossRefGoogle Scholar
  16. 16.
    Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101-1–017101-4 (2001)CrossRefGoogle Scholar
  17. 17.
    Ge, X.H., Cheng, R.J., Li, Z.P.: Two velocity difference model for a car following theory. Physica A 387, 5239–5245 (2008)CrossRefGoogle Scholar
  18. 18.
    Immers, L.H., Logghe, S.: Traffic Flow Theory, Faculty of Engineering, Department of Civil Engineering, Section Traffic and Infrastructure. In: Kasteelpark Arenberg, B-3001 Heverlee, Belgium, vol. 40 (2002)Google Scholar
  19. 19.
    Kretz, T., Mosbach: Pedestrian Traffic, Simulation and Experiment, Doctor Dissertation, Vom Fachbereich Physik der Duisburg-Essen University (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kohei Arai
    • 1
  • Tri Harsono
    • 1
    • 2
  1. 1.Information Science DepartmentSaga UniversitySagaJapan
  2. 2.Electronics Engineering Polytechnic Institute of Surabaya (EEPIS)SurabayaIndonesia

Personalised recommendations