Advertisement

Efficient Algorithms for the 2-Center Problems

  • Tadao Takaoka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

This paper achieves O(n 3loglogn/logn) time for the 2-center problems on a directed graph with non-negative edge costs under the conventional RAM model where only arithmetic operations, branching operations, and random accessibility with O(logn) bits are allowed. Here n is the number of vertices. This is a slight improvement on the best known complexity of those problems, which is O(n 3). We further show that when the graph is with unit edge costs, one of the 2-center problems can be solved in O(n 2.575) time.

Keywords

Edge Cost Network Location Problem Pair Short Path Distance Matrix Multiplication Pair Short Path Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Alon, N., Galil, Margalit, O.: On the Exponent of the All Pairs Shortest 2Path Problem. Jour. Comp. Sys. Sci. 54(2), 255–262 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Moshe, B., Bhattacharya, B., Shi, Q.S.: Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 693–703. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chan, T.: More algorithms for all pairs shortest paths. In: STOC 2007, pp. 590–598 (2007)Google Scholar
  5. 5.
    Dobosiewicz, A.: more efficient algorithm for min-plus multiplication. Inter. J. Comput. Math. 32, 49–60 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Frederickson, G.N.: Parametric Search and Locating Supply Centers in Trees. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 299–319. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Fredman, M.: New bounds on the complexity of the shortest path problem. SIAM Jour. Computing 5, 83–89 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Han, Y.: Improved algorithms for all pairs shortest paths. Info. Proc. Lett. 91, 245–250 (2004)CrossRefGoogle Scholar
  10. 10.
    Han, Y.: An O(n 3(loglogn/logn)5/4) Time Algorithm for All Pairs Shortest Path. Algorithmica 51(4), 428–434 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kariv, O., Hakimi, S.L.: An Algorithmic Approach to Network Location Problems. I: The p-Centers. SIAM Jour. Appl. Math. 37(3), 513–538 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kariv, O., Hakimi, S.L.: An Algorithmic Approach to Network Location Problems. II: The p-Medians. SIAM Jour. Appl. Math. 37(3), 539–560 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Takaoka, T.: A New upper bound on the complexity of the all pairs shortest path problem. Info. Proc. Lett. 43, 195–199 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Takaoka, T.: Subcubic algorithms for the all pairs shortest path problem. Algorithmica 20, 309–318 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 278–289. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Takaoka, T.: An O(n 3loglogn/logn) time algorithm for the all pairs shortest path problem. Info. Proc. Lett. 96, 154–161 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Zwick, U.: All pairs shortest paths in weighted directed graphs - exact and almost exact algorithms. In: 39th FOCS, pp. 310–319 (1998)Google Scholar
  18. 18.
    Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. Jour. ACM 49(3), 289–317 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tadao Takaoka
    • 1
  1. 1.Department of Computer ScienceUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations