Phenotypic Diversity in Initial Genetic Programming Populations

  • David Jackson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6021)

Abstract

A key factor in the success or otherwise of a genetic programming population in evolving towards a solution is the extent of diversity amongst its members. Diversity may be viewed in genotypic (structural) or in phenotypic (behavioural) terms, but the latter has received less attention. We propose a method for measuring phenotypic diversity in terms of the run-time behaviour of programs. We describe how this is applicable to a range of problem domains and show how the promotion of such diversity in initial genetic programming populations can have a substantial impact on solution-finding performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McPhee, N.F., Hopper, N.J.: Analysis of Genetic Diversity through Program History. In: Banzhaf, W., et al. (eds.) Proc. Genetic and Evolutionary Computation Conf., Florida, USA, pp. 1112–1120 (1999)Google Scholar
  2. 2.
    Daida, J.M., Ward, D.J., Hilss, A.M., Long, S.L., Hodges, M.R., Kriesel, J.T.: Visualizing the Loss of Diversity in Genetic Programming. In: Proc. IEEE Congress on Evolutionary Computation, Portland, Oregon, USA, pp. 1225–1232 (2004)Google Scholar
  3. 3.
    Daida, J.M.: Towards Identifying Populations that Increase the Likelihood of Success in Genetic Programming. In: Beyer, H.-G., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf. (GECCO 2005), Washington DC, USA, pp. 1627–1634 (2005)Google Scholar
  4. 4.
    Hien, N.T., Hoai, N.X.: A Brief Overview of Population Diversity Measures in Genetic Programming. In: Pham, T.L., et al. (eds.) Proc. 3rd Asian-Pacific Workshop on Genetic Programming, Hanoi, Vietnam, pp. 128–139 (2006)Google Scholar
  5. 5.
    Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced Population Diversity Measures in Genetic Programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 341–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Burke, E., Gustafson, S., Kendall, G.: Diversity in Genetic Programming: An Analysis of Measures and Correlation with Fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)CrossRefGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  8. 8.
    de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing Bloat and Promoting Diversity using Multi-Objective Methods. In: Spector, L., et al. (eds.) Proc. Genetic Evolutionary Computation Conf., San Francisco, CA, USA, pp. 11–18 (2001)Google Scholar
  9. 9.
    Wyns, B., de Bruyne, P., Boullart, L.: Characterizing Diversity in Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 250–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Rosca, J.P.: Genetic Programming Exploratory Power and the Discovery of Functions. In: McDonnell, J.R., et al. (eds.) Proc. 4th Conf. Evolutionary Programming, San Diego, CA, USA, pp. 719–736 (1995)Google Scholar
  11. 11.
    Rosca, J.P.: Entropy-Driven Adaptive Representation. In: Rosca, J.P. (ed.) Proc. Workshop on Genetic Programming: From Theory to Real-World Applications, Tahoe City, CA, USA, pp. 23–32 (1995)Google Scholar
  12. 12.
    D’haeseleer, P., Bluming, J.: Effects of Locality in Individual and Population Evolution. In: Kinnear, K.E., et al. (eds.) Advances in Genetic Programming, ch. 8, pp. 177–198. MIT Press, Cambridge (1994)Google Scholar
  13. 13.
    Ryan, C.: Pygmies and Civil Servants. In: Kinnear, K.E., et al. (eds.) Advances in Genetic Programming, ch. 11, pp. 243–263. MIT Press, Cambridge (1994)Google Scholar
  14. 14.
    Looks, M.: On the Behavioural Diversity of Random Programs. In: Thierens, D., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf. (GECCO 2007), London, England, UK, pp. 1636–1642 (2007)Google Scholar
  15. 15.
    Beadle, L., Johnson, C.G.: Semantic Analysis of Program Initialisation in Genetic Programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)CrossRefGoogle Scholar
  16. 16.
    Soule, T.: Code Growth in Genetic Programming. PhD Thesis, University of Idaho (1998)Google Scholar
  17. 17.
    Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The Evolution of Size and Shape. In: Spector, L., et al. (eds.) Advances in Genetic Programming, vol. 3, pp. 163–190. MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Jackson, D.: Dormant Program Nodes and the Efficiency of Genetic Programming. In: Beyer, H.-G., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf. (GECCO 2005), Washington DC, USA, pp. 1745–1751 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Jackson
    • 1
  1. 1.Dept. of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations