Advertisement

Positional Effect of Crossover and Mutation in Grammatical Evolution

  • Tom Castle
  • Colin G. Johnson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6021)

Abstract

An often-mentioned issue with Grammatical Evolution is that a small change in the genotype, through mutation or crossover, may completely change the meaning of all of the following genes. This paper analyses the crossover and mutation operations in GE, in particular examining the constructive or destructive nature of these operations when occurring at points throughout a genotype. The results we present show some strong support for the idea that events occurring at the first positions of a genotype are indeed more destructive, but also indicate that they may be the most constructive crossover and mutation points too. We also demonstrate the sensitivity of this work to the precise definition of what is constructive/destructive.

Keywords

Grammatical Evolution crossover mutation position bias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKay, R.I., Nguyen, X.H., Whigham, P.A., Shan, Y.: Grammars in genetic programming: A brief review. In: Kang, L., Cai, Z., Yan, Y. (eds.) Progress in Intelligence Computation and Intelligence: Proceedings of the International Symposium on Intelligence, Computation and Applications, Wuhan, PRC, China, pp. 3–18. University of Geosciences Press (2005)Google Scholar
  2. 2.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5, 349–358 (2001)CrossRefGoogle Scholar
  3. 3.
    Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  5. 5.
    Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive crossover in genetic programming. In: Rosca, J.P. (ed.) Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, Tahoe City, California, USA, pp. 6–22 (1995)Google Scholar
  6. 6.
    Johnson, C.: Genetic programming crossover: Does it cross over? In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 97–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Eshelman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), Pittsburgh, PA, USA, pp. 310–317. Morgan Kaufmann, San Francisco (1995)Google Scholar
  8. 8.
    Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 81–116. Oxford University Press, Oxford (1996)Google Scholar
  9. 9.
    Harper, R., Blair, A.: A self-selecting crossover operator. In: Yen, G.G., et al. (eds.) Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, pp. 5569–5576. IEEE Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Harper, R., Blair, A.: A structure preserving crossover in grammatical evolution. In: Corne, D., et al. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, vol. 3, pp. 2537–2544. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  11. 11.
    Keijzer, M., Ryan, C., O’Neill, M., Cattolico, M., Babovic, V.: Ripple crossover in genetic programming. In: Miller, J.F., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 74–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    O’Neill, M., Ryan, C.: Crossover in grammatical evolution: A smooth operator? In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 149–162. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Hugosson, J., Hemberg, E., Brabazon, A., O’Neill, M.: An investigation of the mutation operator using different representations in grammatical evolution. In: 2nd International Symposium Advances in Artificial Intelligence and Applications, Wisla, Poland, vol. 2, pp. 409–419 (2007)Google Scholar
  14. 14.
    Tackett, W.A.: Greedy recombination and genetic search on the space of computer programs. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms, Estes Park, Colorado, USA, 1994, vol. 3, pp. 271–297. Morgan Kaufmann, San Francisco (1994)Google Scholar
  15. 15.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  16. 16.
    Majeed, H., Ryan, C.: Using context-aware crossover to improve the performance of GP. In: Keijzer, M., et al. (eds.) GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, Seattle, Washington, USA, vol. 1, pp. 847–854. ACM Press, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tom Castle
    • 1
  • Colin G. Johnson
    • 1
  1. 1.School of ComputingUniversity of KentCanterburyUK

Personalised recommendations