Fast Evaluation of GP Trees on GPGPU by Optimizing Hardware Scheduling

  • Ogier Maitre
  • Nicolas Lachiche
  • Pierre Collet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6021)

Abstract

This paper shows that it is possible to use General Purpose Graphic Processing Unit cards for a fast evaluation of different Genetic Programming trees on as few as 32 fitness cases by using the hardware scheduling of NVIDIA cards. Depending on the function set, observed speedup ranges between ×50 and ×250 on one half of an NVidia GTX295 GPGPU card, vs a single core of an Intel Quad core Q8200.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brameier, M., Banzhaf, W.: Linear Genetic Programming. Genetic and Evolutionary Computation, vol. XVI. Springer, Heidelberg (2007)MATHGoogle Scholar
  2. 2.
    Chitty, D.M.: A data parallel approach to genetic programming using programmable graphics hardware. In: Procs of the 9th annual conference on Genetic and evolutionary computation, London, England, pp. 1566–1573. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Holladay, K., Robbins, K., von Ronne, J.: FIFTH: A stack based GP language for vector processing. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 102–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). MIT Press, Cambridge (1992)Google Scholar
  6. 6.
    Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)MATHGoogle Scholar
  7. 7.
    Langdon, W., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU graphics cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Langdon, W.B.: A field guide to genetic programing. Wyvern, 8 (April 2008)Google Scholar
  9. 9.
    Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain parallelization of evolutionary algorithms on gpgpu cards with easea. In: GECCO, pp. 1403–1410 (2009)Google Scholar
  10. 10.
    Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: GECCO 2008: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation, pp. 2701–2726. ACM, New York (2008)CrossRefGoogle Scholar
  11. 11.
    NVIDIA. NVIDIA CUDA Programming Guide 2.0 (2008)Google Scholar
  12. 12.
    Robilliard, D., Marion, V., Fonlupt, C.: High performance genetic programming on GPU. In: Proceedings of the 2009 workshop on Bio-inspired algorithms for distributed systems, Barcelona, Spain, pp. 85–94. ACM, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Robilliard, D., Marion-Poty, V., Fonlupt, C.: Population parallel GP on the G80 GPU. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, p. 98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ogier Maitre
    • 1
  • Nicolas Lachiche
    • 1
  • Pierre Collet
    • 1
  1. 1.LSIIT - UMR 7005 Pôle API Bd Sébastien BrantIllkirchFrance

Personalised recommendations