Genetic Programming for Auction Based Scheduling

  • Mohamed Bader-El-Den
  • Shaheen Fatima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6021)

Abstract

In this paper, we present a genetic programming (GP) framework for evolving agent’s binding function (GPAuc) in a resource allocation problem. The framework is tested on the exam timetabling problem (ETP). There is a set of exams, which have to be assigned to a predefined set of slots and rooms. Here, the exam time tabling system is the seller that auctions a set of slots. The exams are viewed as the bidding agents in need of slots. The problem is then to find a schedule (i.e., a slot for each exam) such that the total cost of conducting the exams as per the schedule is minimised. In order to arrive at such a schedule, we need to find the bidders’ optimal bids. This is done using genetic programming. The effectiveness of GPAuc is demonstrated experimentally by comparing it with some existing benchmarks for exam timetabling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple heuristic orderings for examination timetabling. In: Burke, Trick [7], pp. 334–353Google Scholar
  2. 2.
    Bader-El-Den, M., Poli, R., Fatima, S.: Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework. Memetic Computing 1, 205–219 (2009)CrossRefGoogle Scholar
  3. 3.
    Bader-El-Den, M.B., Poli, R.: Generating sat local-search heuristics using a gp hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1559–1565. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research 176(1), 177–192 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: Algorithmic strategies and. Journal of Operational Research Society 47, 73–83 (1996)Google Scholar
  9. 9.
    Corne, D., Ross, P., lan Fang, H.: Evolutionary timetabling: practice, prospects and work in progress. In: Proceedings of the UK Planning and Scheduling SIG Workshop, Strathclyde (1994)Google Scholar
  10. 10.
    Côté, P., Wong, T., Sabourin, R.: A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity problem. In: Burke, Trick [7], pp. 294–312Google Scholar
  11. 11.
    Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 219–228. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Erben, W.: A grouping genetic algorithm for graph colouring and exam timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 132–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Fatima, S.S.: Bidding strategies for multi-object auctions. In: Negotiation, Auctions and Market Engineering. LNBIP, vol. 2, pp. 200–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Fukunaga, A.S.: Automated discovery of composite sat variable-selection heuristics. In: Eighteenth national conference on Artificial intelligence, Menlo Park, CA, USA. American Association for Artificial Intelligence, pp. 641–648 (2002)Google Scholar
  15. 15.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  16. 16.
    Krishna, V.: Auction Theory. Academic Press, London (2002)Google Scholar
  17. 17.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHGoogle Scholar
  18. 18.
    Pappa, G., Freitas, A.: Evolving rule induction algorithms with multi-objective grammar-based genetic programming. Knowledge and information systems 19(3), 283–309 (2009)CrossRefGoogle Scholar
  19. 19.
    Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008) (With contributions by J. R. Koza) Published via, http://lulu.com and freely available at, http://www.gp-field-guide.org.uk
  20. 20.
    Ross, P., Corne, D., Terashima-Marín, H.: The phase-transition niche for evolutionary algorithms in timetabling. In: Selected papers from the First International Conference on Practice and Theory of Automated Timetabling, London, UK, pp. 309–324. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Ross, P., Hart, E., Corne, D.: Some observations about ga-based exam timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 115–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Ross, P., Hart, E., Corne, D.: Genetic algorithms and timetabling, pp. 755–771. Springer-Verlag New York Inc., New York (2003)Google Scholar
  23. 23.
    Ülker, Ö., Özcan, E., Korkmaz, E.E.: Linear linkage encoding in grouping problems: Applications on graph coloring and timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 347–363. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Welsh, D., Powell, M.: An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal 10(1), 85–87 (1967)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mohamed Bader-El-Den
    • 1
  • Shaheen Fatima
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUK

Personalised recommendations