Geometric Differential Evolution on the Space of Genetic Programs

  • Alberto Moraglio
  • Sara Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6021)

Abstract

Geometric Differential Evolution (GDE) is a very recently introduced formal generalization of traditional Differential Evolution (DE) that can be used to derive specific GDE for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this paper, we derive formally a specific GDE for the space of genetic programs. The result is a Differential Evolution algorithm searching the space of genetic programs by acting directly on their tree representation. We present experimental results for the new algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekart, A., Nemeth, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Gong, T., Tuson, A.L.: Differential Evolution for Binary Encoding. In: Soft Computing in Industrial Applications, pp. 251–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  4. 4.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)MATHGoogle Scholar
  5. 5.
    Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms, Ph.D. thesis, University of Essex (2007)Google Scholar
  7. 7.
    Moraglio, A., Di Chio, C., Poli, R.: Geometric Particle Swarm Optimization. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 125–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Moraglio, A., Di Chio, C., Togelius, J., Poli, R.: Geometric Particle Swarm Optimization. Journal of Artificial Evolution and Applications, Article ID 143624 (2008)Google Scholar
  9. 9.
    Moraglio, A., Poli, R.: Geometric Landscape of Homologous Crossover for Syntactic Trees. In: Proceedings of CEC-2005, pp. 427–434. IEEE Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Moraglio, A., Poli, R.: Inbreeding Properties of Geometric Crossover and Non-geometric Recombinations. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Moraglio, A., Togelius, J.: Geometric PSO for the Sudoku Puzzle. In: Proceedings of GECCO-2007, pp. 118–125. ACM Press, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Moraglio, A., Togelius, J.: Geometric Differential Evolution. In: Proceedings of GECCO-2009, pp. 1705–1712. ACM Press, New York (2009)CrossRefGoogle Scholar
  13. 13.
    O’Neill, M., Brabazon, A.: Grammatical Differential Evolution. In: Proceedings of ICAI-2006, pp. 231–236. CSREA Press (2006)Google Scholar
  14. 14.
    Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for Global Permutation-based Combinatorial Optimization. Springer, Heidelberg (2009)MATHGoogle Scholar
  15. 15.
    Pampara, G., Engelbrecht, A.P., Franken, N.: Binary Differential Evolution. In: Proceedings of CEC 2006, pp. 1873–1879. IEEE Press, Los Alamitos (2006)Google Scholar
  16. 16.
    Price, K.V., Storm, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  17. 17.
    Togelius, J., De Nardi, R., Moraglio, A.: Geometric PSO + GP = Particle Swarm Programming. In: Proceedings of CEC 2008, pp. 3594–3600. IEEE Press, Los Alamitos (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alberto Moraglio
    • 1
  • Sara Silva
    • 2
    • 3
  1. 1.School of ComputingUniversity of KentCanterburyUK
  2. 2.INESC-ID LisboaPortugal
  3. 3.Center for Informatics and Systems of the University of CoimbraPortugal

Personalised recommendations